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Introduction

We present our work-in-progress code generation and optimization approach for 
Deep Learning (DL) computations:

- based on our approach of Multi-Dimensional Homomorphisms (MDH) [IJPP’18]

- achieves high performance for popular DL computations by exploiting the already existing 
MDH GPU code generation [PACT’19] & optimization [TACO’20] & execution [JOS’19] 
approach

- more expressive than the state-of-the-art DL abstractions (e.g., as provided by 
TensorFlow): we show that MDH can express multiple DL computations as a single MDH 
expression, enabling optimization across computations (parallelization, tiling, etc.)



A holistic approach toward automatic code generation & optimization & execution 
for data-parallel computations:

● We formally define data-parallel computations (linear algebra routines (BLAS), convolutions, …) 
as Multi-Dimensional Homomorphisms (MDHs).

● We enable conveniently implementing MDHs by providing a high-level DSL for them.

● We provide a DSL compiler for automatically generating executable low-level code (CUDA, etc) -- the code is
fully automatically optimized (auto-tuned) for the target device and data characteristics (size, layout, etc).

Excursion: MDH in a Nutshell



Behind the scenes:

High-Level MDH Representation Low-Level MDH Representation

● Expresses what to compute,
via algebraic higher-order functions

● Agnostic from hardware and 
optimization details

● Expresses how to compute, by explicitly 
expressing (de-)composition of computations

● straightforwardly transformable to executable 
program code

formally sound, 
auto-tunable 

lowering process

Excursion: MDH in a Nutshell



The MDH high-level representation at example Matrix Multiplication (MatMul):

MDH pattern instances for MatMul:MDH needs exactly 
three higher-order functions (patterns) 
to express data-parallel computations:

Excursion: MDH in a Nutshell



Linear Algebra
MatMul<...> = out_view<...>( ... ) o md_hom<...>( *, (++, ++, +) ) o inp_view<...>( ... )
MatVec<...> = out_view<...>( ... ) o md_hom<...>( *, (++, +)     ) o inp_view<...>( ... )
DOT<...>    = out_view<...>( ... ) o md_hom<...>( *, (+)         ) o inp_view<...>( ... )

Stencil Computations
Gaussian_2D<...> = out_view<...>( ... ) o md_hom( f_G, (++, ++)     ) o inp_view<...>( ... )
Jacobi_3D<...>   = out_view<...>( ... ) o md_hom( f_J, (++, ++, ++) ) o inp_view<...>( ... )

Data Mining
PRL<...> = out_view<...>( ... ) o md_hom( weight, (++, Ⓧmax) ) o inp_view<...>( ... )

Tensor Contractions
TC<...> = out_view<...>( ... ) o md_hom( *, (++,…,++ , +,…,+) ) o inp_view<...>( ... )

Important functions can naturally be expressed as MDHs:

Further examples: MLP, SVM, ECC, …, Mandelbrot, Parallel Reduction, ...

Access neighboring elements within 
their input buffer

Access user-defined combine operator that 
operates on user-defined data type

Often very high dimensional 
(e.g., 7 dims)

Excursion: MDH in a Nutshell



MDH proved in previous work 
to achieve high performance 

on CPUs & GPUs [1]
[1] Rasch, Schulze, Gorlatch. “Generating Portable High-Performance Code via 
Multi-Dimensional Homomorphisms.”, PACT’19

Excursion: MDH in a Nutshell



Goal of this Poster

Can MDH also 
express DL computations and achieve 
good performance results for them?

Our WIP results look encouraging



DL Computations Expressed 
in the MDH Formalism

Popular DL computations¹ are conveniently expressed 
in the MDH formalism.

¹ Taken from the TensorFlow implementation of the real-world BERT neural network.



DL Computations Expressed 
in the MDH Formalism

BERT Subgraph 
in TensorFlow

BERT Subgraph 
in MDH



Experimental Results

Our preliminary experimental results on NVIDIA V100 GPU show that we can 
achieve better performance than well-performing machine- and hand-optimized 

approaches on real-world data sizes taken from the BERT neural network.

2.9x faster than TVM 

for BiasAddGrad 1.5x faster than TensorFlow for 

BiasAddGrad

1.7x faster than TC for 

BiasAddGrad

1.1x faster than TVM for BatchMatMul

1.9x faster than TC for BatchMatMul

3.8x faster than TVMfor a subgraph of BERT

4.9x faster than TensorFlow for 

a subgraph of BERT1.7x faster than TC

for a subgraph of BERT



Conclusion
MDH for DL— advantages we see:

Future Work:

● Automatizing “DL-subgraph-to-MDH-node” process, by exploiting MDHs’ formal properties;
● Targeting sparse computations;
● Analyzing MDH for DL on further architectures (CPU, etc);
● ...

encouraging 
WIP results

MDH targets also 
CPUs, etc.

encouraging 
WIP results



Thank you for listening!

Code Artifact available: https://gitlab.com/mdh-project/sc21_poster
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Linear Algebra
MatMul<T|M,N,K> = out_view<T>( C: (i,j,k) -> (i,j) ) o md_hom<M,N,K>( *, (++, ++, +) ) o inp_view<T,T>( A: (i,j,k) -> (i,k) ,
                                                                                                        B: (i,j,k) -> (k,j) )
MatVec<...> = out_view<...>( ... ) o md_hom<...>( *, (++, +)     ) o inp_view<...>( ... )
DOT<...>    = out_view<...>( ... ) o md_hom<...>( *, (+)         ) o inp_view<...>( ... )

Stencil Computations
Gaussian_2D<T|I,J> = out_view<T>( OUT: (i,j) -> (i,j) ) o md_hom( f_G, (++, ++) ) o inp_view<T>( IMG: (i,j) -> (i+0,j+0),
                                                                                                      (i,j) -> (i+1,j+0),
                                                                                                      ...,
                                                                                                      (i,j) -> (i+2,j+2) )
Jacobi_3D<...>   = out_view<...>( ... ) o md_hom( f_J, (++, ++, ++) ) o inp_view<...>( ... )

Data Mining
PRL<...> = out_view<...>( ... ) o md_hom( weight, (++, Ⓧmax) ) o inp_view<...>( ... )

Tensor Contractions
TC<...> = out_view<...>( ... ) o md_hom( *, (++,…,++ , +,…,+) ) o inp_view<...>( ... )

Important functions can naturally be expressed as MDHs:

Further examples: MLP, SVM, ECC, …, Mandelbrot, Parallel Reduction, ...

Excursion: MDH in a Nutshell
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