





Seraei

Gorlatch

Richard Schulze

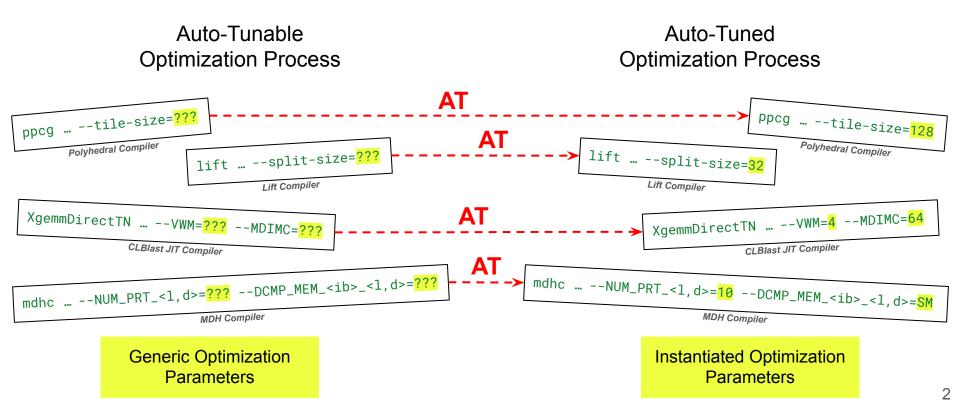
Ari Rasch

# pyATF: Constraint-Based Auto-Tuning in Python

Richard Schulze, Sergei Gorlatch, Ari Rasch

## What is *Auto-Tuning*?

Auto-Tuning (AT) automatically finds optimized values of performance-critical parameters:



## What are Constraints?

### Parameters:

```
tile_size \in \{1, \dots, 128\}
mem_region \in \{GLB, LCL, PRV\}
```

Independent Parameters

num\_threads  $\in \{1, \ldots, 1024\}$ 

### **Constraints:**

<none>

### **Configurations:**

```
{ (1,GLB,1) ,..., (128,PRV,1024) }
```

Any combination of parameter's values represents a valid parameter configuration

Interdependent Parameters

### Parameters:

```
tile_size_1 \in {1, ..., 128}
tile_size_2 \in
tile_size_3 \in {1, ..., 128}
tile_size_3 \in {1, ..., 128}
```

Constraints: tile\_size\_3 | tile\_size\_2 | tile\_size\_1 Configurations: { (1,1,1) , (1,1,2) ,..., (128,128,128) } tile\_size\_2 not multiple of tile\_size\_3

Only combinations that satisfy the constraints represent valid configurations

## **State-of-the-Art Auto-Tuners**

| Framework                | Year | API    | Constr. | Targets                                                                                                                                         |  |  |  |
|--------------------------|------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| OpenTuner [PACT'14]      | 2014 | Python | Х       | *                                                                                                                                               |  |  |  |
| CLTune [MCSoC'15]        | 2015 | C++    | (🖌)     | OpenCL                                                                                                                                          |  |  |  |
| Kernel Tuner             | 2019 | Python | (🗸)     | OpenCL, CUDA,                                                                                                                                   |  |  |  |
| HyperMapper [MASCOTS'19] | 2019 | JSON   | Х       | *                                                                                                                                               |  |  |  |
| KTT                      | 2020 | C++    | (🗸)     | OpenCL, CUDA,                                                                                                                                   |  |  |  |
| ytopt                    | 2021 | Python | (🗸)     | *                                                                                                                                               |  |  |  |
| ATF [TACO'21]            | 2021 | DSL    | ~       | * $\checkmark$ : strong support for constraints                                                                                                 |  |  |  |
| BaCO [ASPLOS'23]         | 2023 | JSON   | ~       | <ul> <li>(✓): limited support for constraints</li> <li>X : no support for constraints</li> <li>* : support for arbitrary prog. lang.</li> </ul> |  |  |  |

State-of-the-Art auto-tuners differ in their <u>API & support for constraints</u> & target programming languages

## **Goal of this Work**



| Framework                                                                                                        | Year | ΑΡΙ    | Constr. | Targets   | pyATF-W                                                                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------|--------|---------|-----------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| OpenTuner [PACT'14]                                                                                              | 2014 | Python | Х       | *         |                                                                                                                        |  |  |  |
| CLTune [MCSoC'15]                                                                                                | 2015 | C++    | (🗸)     | OpenCL    |                                                                                                                        |  |  |  |
| Kernel Tuner                                                                                                     | 2019 | Python | (🗸)     | OpenCL, C | UDA,                                                                                                                   |  |  |  |
| HyperMapper [MASCOTS'19]                                                                                         | 2019 | JSON   | X       | *         |                                                                                                                        |  |  |  |
| KTT                                                                                                              | 2020 | C++    | (🗸)     | OpenCL, C | benCL, CUDA,                                                                                                           |  |  |  |
| ytopt                                                                                                            | 2021 | Python | (🗸)     | *         |                                                                                                                        |  |  |  |
| ATF [TACO'21]                                                                                                    | 2021 | DSL    | ~       |           | Auto-Tuning Framework (ATF)                                                                                            |  |  |  |
| BaCO [ASPLOS'23]                                                                                                 | 2023 | JSON   | ~       | * Interde | Efficient Auto-Tuning of Parallel Programs with<br>Interdependent Tuning Parameters via Auto-Tuning<br>Framework (ATF) |  |  |  |
| pyATF (this work)                                                                                                | 2024 | Python | ~       | * ARI RAS | CH and RICHARD SCHULZE, University of Muenster, Germany                                                                |  |  |  |
| Python™                                                                                                          |      | 1      |         |           | STEUWER, University of Edinburgh, United Kingdom<br>GORLATCH, University of Muenster, Germany ACM TACO 2021            |  |  |  |
| <u>Combine advantages of related approaches</u> & <u>hide them behind a convenient interface for auto-tuning</u> |      |        |         |           |                                                                                                                        |  |  |  |

## **Recap:** The ATF Approach



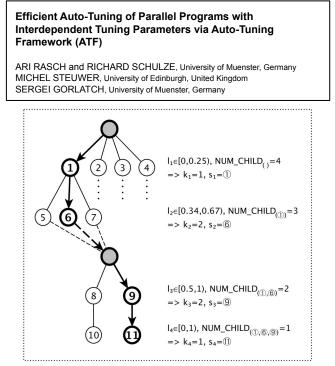
ATF introduces novel processes to Generating & Storing & Exploring the search spaces of constrained tuning parameters, based on a novel Constraint Design & Search Space Structure

// processing groups of interdependent parameters in parallel parallel for ( G : { $G_1, ..., G_n$ } ) // processing individual interdependent parameter groups in parallel parallel for (  $v_1^G$  :  $r_1^G$  ) if (  $pc_1^G <> (v_1^G)$  ) ... parallel for (  $v_{tG}^G$  :  $r_{tG}^G$  ) if (  $pc_{tG}^G < n_1^G, ..., n_{tG-1}^G > (v_{tG}^G)$  ) // sequential computation of a group for (  $v_{tG+1}^G$  :  $r_{tG+1}^G$  ) if (  $pc_{tG+1}^G < n_1^G, ..., n_{tG}^G > (v_{tG+1}^G)$  ) ... for (  $v_{kG}^G$  :  $r_{kG}^G$  ) if (  $pc_{tG+1}^G < n_1^G, ..., n_{tG}^G > (v_{tG+1}^G)$  ) ...

// adding configuration to the search space search\_space.group(G).add\_par( $v^G_{IG}_1,\ldots,v^G_{IG}$ ).add\_seq( $v^G_{IG_{k1}},\ldots,v^G_{kG}$ );

### Novel Constraint Design

### ACM TACO 2021



Novel **CoT** Search Space Structure



```
__kernel void saxpy( const
                                      int
                                               Ν,
                                      float
                      const
                                              а,
                      const __global float*
                                              х,
                            __global float*
                                              V
 for( int w = 0; w < WPT; ++w )</pre>
 {
   const int index = w * get_global_size(0)
                         + get_global_id(0);
   y[ index ] += a * x[ index ];
```

**OpenCL SAXPY** 

- We illustrate pyATF by showing how it is used for auto-tuning SAXPY in OpenCL
- SAXPY has two tuning parameters:

   WPT: [1, N], has to divide N
   LS: [1, N], has to divide N/WPT
- pyATF works in three steps, described in the following



Step 1: Generate the Search Space

- The search space is generated using tuning parameters:
  - WPT: [1, N], has to divide N
  - LS: [1, N], has to divide N/WPT
- A pyATF tuning parameter consists of a
  - name: any arbitrary identifier
  - range: either Interval or Set
  - constraint: any arbitrary Python callable
- <u>Special features:</u>
  - Interval may have a <u>generator function</u>, e.g.,
     Interval(1,10, pow2), for pow2 = lambda
    - i: 2\*\*i, to get the first ten powers of two
  - Constraint functions may contain tuning parameters, e.g., WPT in constraint of LS

# Step 1: Generate the Search Space WPT = TP( 'WPT' Interval( 1,N ) lambda WPT: N % WPT == 0 ) LS = TP('LS')Interval( 1,N ) lambda WPT,LS: (N/WPT) % LS == 0 ) # Step 2: Implement a Cost Function saxpy\_code = "..." N = np.int32(N)a = np.float32(np.random.random()) x = np.random.rand(N).astype(np.float32) y = np.random.rand(N).astype(np.float32) cf = opencl.CostFunction( saxpy\_code ) .platform\_id( 0 ) .device\_id( 0 ) .kernel\_args( N, a,x,y ) .glb\_size( lambda WPT,LS: N/WPT ) .lcl size( lambda LS: LS # Step 3: Explore the Search Space config = Tuner().tuning\_parameters( WPT,LS ) .search\_technique( AUCBandit() ) \ .tune( cf, Evaluations(50) )

# Input Size N = 1000

pyATF program for SAXPY



### Step 2: Implement a Cost Function

- pyATF allows any <u>arbitrary Python callable</u> as cost function that takes as input a particular configuration of tuning parameter values and returns the cost to be minimized (e.g., runtime and/or energy consumption)
- pyATF provides <u>pre-implemented cost functions</u> for:
  - OpenCL
  - CUDA
  - arbitrary programming languages

# Input Size N = 1000

.platform\_id( 0 )
.device\_id( 0 )

.kernel\_args( N, a,x,y )

.lcl size( lambda LS: LS

.glb\_size( lambda WPT,LS: N/WPT )

pyATF program for SAXPY



### Step 3: Explore the Search Space

- pyATF provides different kinds of pre-implemented <u>search</u> <u>techniques</u> & <u>abort conditions</u>:
  - basic search techniques:
    - 1) Differential Evolution, 2) Pattern Search,
    - 3) Simulated Annealing, 4) Torczon, 5) Exhaustive,
    - 6) Random
  - meta search techniques:
    - 1) AUC Bandit, 2) Round Robin
  - abort conditions based on tuning time:
    - 1) Duration, 2) Evaluations, 3) Fraction
  - abort conditions based on tuning result:

```
1) Cost
```

 $\circ$  abort conditions based on both:

1) Speedup, 2) arbitrarily complex combinations via logical operators

• pyATF is designed generically: new search techniques & abort conditions can easily be added

# Input Size N = 1000

```
# Step 2: Implement a Cost Function
saxpy_code = "..."
```

```
N = np.int32(N)
```

```
a = np.float32(np.random.random())
```

```
x = np.random.rand(N).astype(np.float32)
```

```
y = np.random.rand(N).astype(np.float32)
cf = opencl.CostFunction( saxpy_code )
```

```
.platform_id( 0 )
```

```
.device_id( 0 )
.kernel_args( N, a,x,y )
```

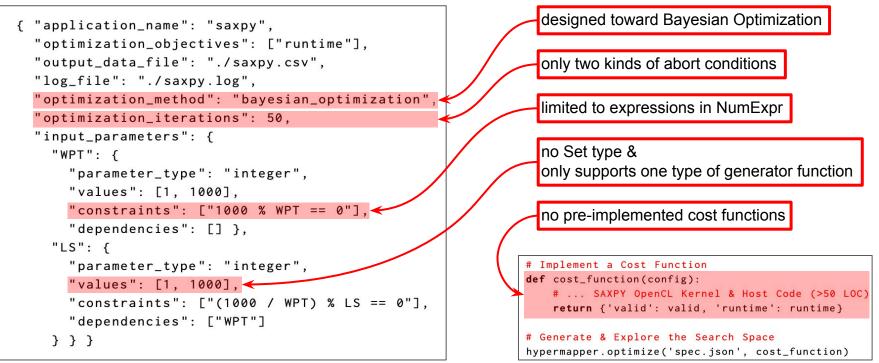
```
.glb_size( lambda WPT,LS: N/WPT )
.lcl size( lambda LS: LS
```

# Step 3: Explore the Search Space

pyATF program for SAXPY

## Interface: pyATF vs. BaCO



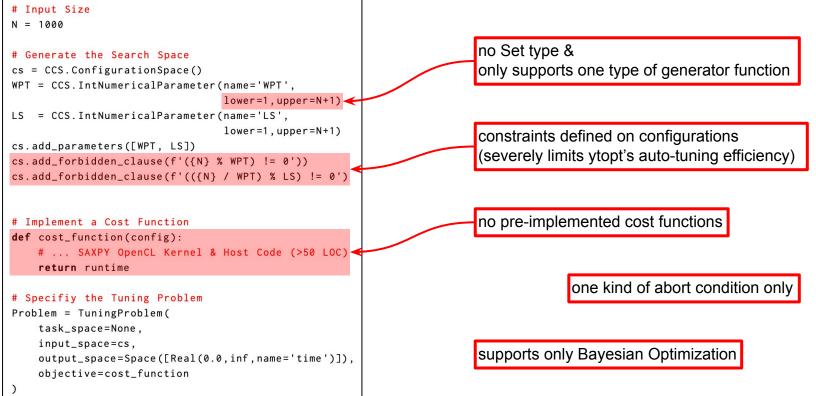


BaCO program for SAXPY

BaCO Python execution program

## Interface: pyATF vs. ytopt





## **Experimental Results**



### **Case Studies:**

- 1.  $CCSD(T) \rightarrow Quantum Chemistry$
- 2. CONV  $\rightarrow$  Stencil
- 3. PRL  $\rightarrow$  Data Mining
- 4. GEMM  $\rightarrow$  Deep Learning

### **Data Characteristics:**

- 1.  $CCSD(T) \rightarrow TCCG$
- 2. CONV  $\rightarrow$  ImageNet
- 3. PRL  $\rightarrow$  EKR
- 4. GEMM  $\rightarrow$  ResNet50

### Architectures:



NVIDIA Ampere A100 GPU

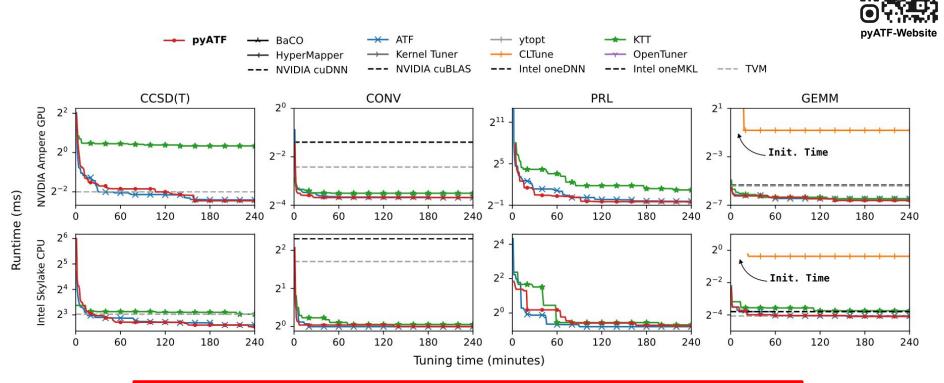


Intel Skylake Xeon Gold CPU

### Search Space Characteristics:

|   | Name    | Domain            | Input Size                                                       | #TP | Min. RS | Max. RS | Avg. RS | SP                      | FT                |
|---|---------|-------------------|------------------------------------------------------------------|-----|---------|---------|---------|-------------------------|-------------------|
| 1 | CCSD(T) | Quantum Chemistry | $24 \times 16 \times 16 \times 24 \times 16 \times 16 \times 24$ | 39  | 2       | 24      | 15.46   | 8.81 * 10 <sup>18</sup> | $4.41 * 10^{-25}$ |
| 2 | CONV    | Image Processing  | $4288 \times 2848$                                               | 15  | 2       | 4288    | 2379.33 | $2.03 * 10^8$           | $2.33 * 10^{-29}$ |
| 3 | PRL     | Data Mining       | $1024 \times 1024$                                               | 14  | 2       | 1024    | 586.14  | $2.31 * 10^7$           | $1.33 * 10^{-19}$ |
| 4 | GEMM    | Deep Learning     | $1 \times 1000 \times 2048$                                      | 19  | 1       | 2048    | 642.89  | $1.08 * 10^8$           | $6.34 * 10^{-21}$ |

### **Experimental Results**



Even though pyATF relies on an easy-to-use, Python-based user interface, <u>it achieves high-quality auto-tuning results</u>

## Conclusion





#### Overview

The Auto-Tuning Framework (ATF) is a general-purpose auto-tuning approach: given a program that is implemented as generic in performance-critical program parameters (a.k.a. *tuning parameters)*, such as sizes of tiles and numbers of threads, ATF fully automatically determines a hardware- and data-pointivade configuration of such parameters.

#### Key Feature of ATF

A key feature of ATF is its support for *Tuning Parameter Constraints*. Parameter constraints allow auto-tuning programs whose tuning parameters have so-called *interdependencies* among them, e.g., the value of one tuning parameter has to evenly divide the value of another tuning parameter.

ATF's support for parameter constraints is important: modern parallel programs target novel parallel architectures, and such architectures typically have deep memory and core hierarchies thus requiring constraints on tuning parameters, e.g., the value of a tile size tuning parameter on an upper memory layer has to be a multiple of a tile size value on a lower memory layer.

For such parameters, ATF introduces novel concepts for Generating & Storing & Exploring the search spaces of constrained tuning parameters, they contributing to a substantially more efficient overall auto-tuning process for such parameters, as confirmed in our *Experiments*.

#### Generality of ATF

For wide applicability, ATF is designed as generic in:

- The target programming Language, e.g., C(2+, CUDA, QDenMP, or QDenCL. ATF offers pra-implemented cost functions for conveniently auto-tuning C(2+) programs, as well as CUDA and OpenCL. Karnets which require host code for their execution which is automatically generated and executed by ATF's pre-implemented CUDA and OpenCL cost functions. ATF also offers a pre-implemented generic cost function that can be used for conveniently auto-tuning programs in any other programming language different from C(2+). CUDA, and OpenCL.
- The Search Technique to use. ATF offers different kinds of pre-implemented search techniques, such as simulated annealing and AUC bandit (inspired by OpenTuner) which combines multiple techniques for exploration (such as differential evolution, Nelder-Mead, and Torczon hillclimbers). New techniques can be conveniently added to ATF, by implementing a straightforward interface.
- The Turing Objective, e.g., high runtime performance and/or low energy consumption. By default, ATF's preimplemented cost functions auto-tune for high runtime performance. The user can choose arbitrary, self-defined tuning objectives.



- pyATF introduces a productive user-interface, meeting real-world demands (e.g., regarding abort conditions)
- pyATF combines major advantages of state-of-the-art approaches:
  - 1. implemented in Python
  - 2. supports constraints
  - 3. supports arbitrary programming languages
- pyATF works <u>immediately out-of-the-box</u>, is <u>publicly</u> <u>available</u> and <u>open source</u>, can be conveniently installed via <u>Python's package manager pip</u>, and is <u>extensively</u> <u>documented</u> and <u>illustrated on its website</u>
- pyATF already successfully used!



We have a talk at C4ML! Room: Willow, Time: 3:30pm

# **Questions?**



https://richardschulze.net r.schulze@uni-muenster.de



**Richard Schulze** 





https://github.com/atf-tuner/pyATF



https://arirasch.net a.rasch@uni-muenster.de



Ari Rasch