
pyATF: Constraint-Based
Auto-Tuning in Python
Richard Schulze, Sergei Gorlatch, Ari Rasch

Richard
Schulze

Sergei
Gorlatch

Ari
Rasch

What is Auto-Tuning?

Auto-Tuning (AT) automatically finds optimized values of performance-critical parameters:

Auto-Tunable
Optimization Process

Auto-Tuned
Optimization Process

ppcg … --tile
-size=???

Polyhedral Compiler

lift … --split-size
=???

Lift Compiler

XgemmDirectTN … --VWM=??? --MDIMC=???
CLBlast JIT Compiler

mdhc … --NUM_PRT_<l,d>
=??? --DCMP_MEM_<ib>_<

l,d>=???

MDH Compiler

ppcg … --tile-size=128
Polyhedral Compilerlift … --split-size=32

Lift Compiler

XgemmDirectTN … --VWM=4
 --MDIMC=64

CLBlast JIT Compiler

mdhc … --NUM_PRT_<l,d>=10 --DCMP_MEM_<ib>_<l,d>=SM
MDH Compiler

Generic Optimization
Parameters

Instantiated Optimization
Parameters

AT
AT

AT

AT

2

What are Constraints?
Independent Parameters Interdependent Parameters

Parameters:

tile_size ∈ {1,...,128}

mem_region ∈ {GLB,LCL,PRV}

num_threads ∈ {1,...,1024}

Constraints:

Configurations:

<none>

{ (1,GLB,1) ,..., (128,PRV,1024) }

Any combination of parameter’s values
represents a valid parameter configuration

Only combinations that satisfy the
constraints represent valid configurations

Parameters:

tile_size_1 ∈ {1,...,128}

tile_size_2 ∈
{1,...,128}

tile_size_3 ∈ {1,...,128}

Constraints:

Configurations:

tile_size_3 | tile_size_2 | tile_size_1

{ (1,1,1) , (1,1,2) ,..., (128,128,128) }

tile_size_2
not multiple of

tile_size_3

3

State-of-the-Art Auto-Tuners

State-of-the-Art auto-tuners differ in their
API & support for constraints & target programming languages

4

Framework Year API Constr. Targets
OpenTuner [PACT’14] 2014 Python ╳ *
CLTune [MCSoC’15] 2015 C++ (✔) OpenCL
Kernel Tuner 2019 Python (✔) OpenCL, CUDA, …
HyperMapper [MASCOTS’19] 2019 JSON ╳ *
KTT 2020 C++ (✔) OpenCL, CUDA, …
ytopt 2021 Python (✔) *
ATF [TACO’21] 2021 DSL ✔ *
BaCO [ASPLOS’23] 2023 JSON ✔ *

✓ : strong support for constraints
(✓): limited support for constraints
X : no support for constraints
* : support for arbitrary prog. lang.

Framework Year API Constr. Targets
OpenTuner [PACT’14] 2014 Python ╳ *
CLTune [MCSoC’15] 2015 C++ (✔) OpenCL
Kernel Tuner 2019 Python (✔) OpenCL, CUDA, …
HyperMapper [MASCOTS’19] 2019 JSON ╳ *
KTT 2020 C++ (✔) OpenCL, CUDA, …
ytopt 2021 Python (✔) *
ATF [TACO’21] 2021 DSL ✔ *
BaCO [ASPLOS’23] 2023 JSON ✔ *
pyATF (this work) 2024 Python ✔ *

Goal of this Work

Efficient Auto-Tuning of Parallel Programs with
Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF)

ARI RASCH and RICHARD SCHULZE, University of Muenster, Germany
MICHEL STEUWER, University of Edinburgh, United Kingdom
SERGEI GORLATCH, University of Muenster, Germany

Combine advantages of related approaches &
hide them behind a convenient interface for auto-tuning

ACM TACO 2021

Auto-Tuning Framework (ATF)

pyATF-Website

5

Recap: The ATF Approach
pyATF-Website

ATF introduces novel processes to
Generating & Storing & Exploring

the search spaces of constrained tuning
parameters, based on a novel

Constraint Design & Search Space Structure

Efficient Auto-Tuning of Parallel Programs with
Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF)

ARI RASCH and RICHARD SCHULZE, University of Muenster, Germany
MICHEL STEUWER, University of Edinburgh, United Kingdom
SERGEI GORLATCH, University of Muenster, Germany

ACM TACO 2021

6
Novel

Constraint Design
Novel CoT

Search Space Structure

Illustration of pyATF
pyATF-Website

7

OpenCL SAXPY

● We illustrate pyATF by showing how it is
used for auto-tuning SAXPY in OpenCL

● SAXPY has two tuning parameters:
○ WPT: [1,N], has to divide N
○ LS: [1,N], has to divide N/WPT

● pyATF works in three steps, described in
the following

pyATF program for SAXPY

Illustration of pyATF
pyATF-Website

8

● The search space is generated using tuning parameters:
○ WPT: [1,N], has to divide N
○ LS: [1,N], has to divide N/WPT

● A pyATF tuning parameter consists of a
○ name: any arbitrary identifier
○ range: either Interval or Set
○ constraint: any arbitrary Python callable

● Special features:
○ Interval may have a generator function, e.g.,

Interval(1,10 , pow2), for pow2 = lambda
i: 2**i, to get the first ten powers of two

○ Constraint functions may contain tuning parameters,
e.g., WPT in constraint of LS

Step 1: Generate the Search Space

Illustration of pyATF
pyATF-Website

9

Step 2: Implement a Cost Function
● pyATF allows any arbitrary Python callable as cost function

that takes as input a particular configuration of tuning
parameter values and returns the cost to be minimized (e.g.,
runtime and/or energy consumption)

● pyATF provides pre-implemented cost functions for:
○ OpenCL
○ CUDA
○ arbitrary programming languages

pyATF program for SAXPY

Illustration of pyATF
pyATF-Website

10

Step 3: Explore the Search Space
● pyATF provides different kinds of pre-implemented search

techniques & abort conditions:
○ basic search techniques:

1) Differential Evolution, 2) Pattern Search,
3) Simulated Annealing, 4) Torczon, 5) Exhaustive,
6) Random

○ meta search techniques:
1) AUC Bandit, 2) Round Robin

○ abort conditions based on tuning time:
1) Duration, 2) Evaluations, 3) Fraction

○ abort conditions based on tuning result:
1) Cost

○ abort conditions based on both:
1) Speedup, 2) arbitrarily complex combinations via logical
operators

● pyATF is designed generically: new search techniques &
abort conditions can easily be added

pyATF program for SAXPY

Interface: pyATF vs. BaCO
pyATF-Website

11

BaCO program for SAXPY BaCO Python execution program

designed toward Bayesian Optimization

only two kinds of abort conditions

limited to expressions in NumExpr

no Set type &
only supports one type of generator function

no pre-implemented cost functions

Interface: pyATF vs. ytopt
pyATF-Website

12ytopt program for SAXPY

one kind of abort condition only

constraints defined on configurations
(severely limits ytopt’s auto-tuning efficiency)

no pre-implemented cost functions

no Set type &
only supports one type of generator function

supports only Bayesian Optimization

Experimental Results
pyATF-Website

13

Case Studies: Data Characteristics: Architectures:

Search Space Characteristics:

1. CCSD(T)→ Quantum Chemistry
2. CONV → Stencil
3. PRL → Data Mining
4. GEMM → Deep Learning

1. CCSD(T)→ TCCG
2. CONV → ImageNet
3. PRL → EKR
4. GEMM → ResNet50

NVIDIA Ampere A100 GPU

Intel Skylake Xeon Gold CPU

Experimental Results
pyATF-Website

14

Even though pyATF relies on an easy-to-use, Python-based
user interface, it achieves high-quality auto-tuning results

Conclusion
pyATF-Website

15
https://atf-tuner.org

● pyATF introduces a productive user-interface, meeting
real-world demands (e.g., regarding abort conditions)

● pyATF combines major advantages of state-of-the-art
approaches:
1. implemented in Python
2. supports constraints
3. supports arbitrary programming languages

● pyATF works immediately out-of-the-box, is publicly
available and open source, can be conveniently installed via
Python’s package manager pip, and is extensively
documented and illustrated on its website

● pyATF already successfully used!

https://github.com/atf-tuner/pyATF

https://atf-tuner.org
https://github.com/atf-tuner/pyATF

pyATF-Website

Richard Schulze

Ari Rasch

https://github.com/atf-tuner/pyATF

Questions?
https://richardschulze.net

r.schulze@uni-muenster.de

https://arirasch.net
a.rasch@uni-muenster.de

We have a talk at C4ML!
Room: Willow, Time: 3:30pm

https://github.com/atf-tuner/pyATF
https://richardschulze.net
mailto:r.schulze@uni-muenster.de
https://arirasch.net
mailto:a.rasch@uni-muenster.de

