

Code Generation & Optimization for Deep-Learning Computations on GPUs via Multi-Dimensional Homomorphisms

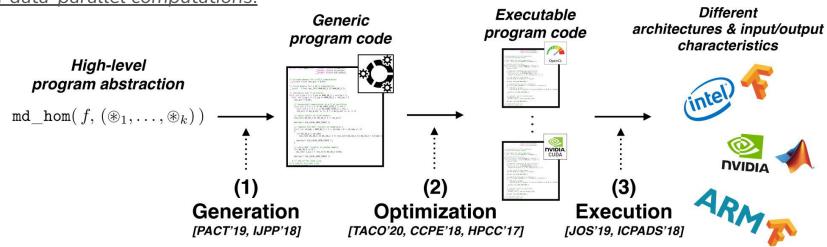
Richard Schulze, Ari Rasch, Sergei Gorlatch University of Münster, Germany

Introduction

We present our work-in-progress code generation and optimization approach for Deep Learning (DL) computations:

- based on our approach of Multi-Dimensional Homomorphisms (MDH) [IJPP'18]
- achieves **high performance** for popular DL computations by exploiting the already existing MDH GPU code generation [PACT'19] & optimization [TACO'20] & execution [JOS'19] approach
- **more expressive** than the state-of-the-art DL abstractions (e.g., as provided by TensorFlow): we show that MDH can express multiple DL computations as a single MDH expression, enabling optimization across computations (parallelization, tiling, etc.)

<u>A holistic approach toward automatic code generation & optimization & execution</u> for data-parallel computations:

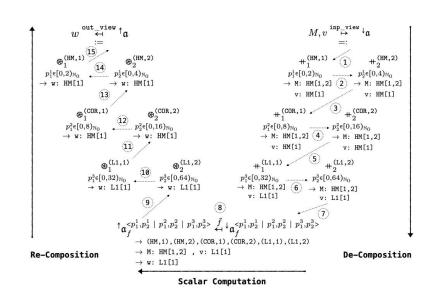


- We formally define data-parallel computations (linear algebra routines (BLAS), convolutions, ...)
 as Multi-Dimensional Homomorphisms (MDHs).
- We enable **conveniently** implementing MDHs by providing a **high-level DSL** for them.
- We provide a DSL compiler for automatically generating executable low-level code (CUDA, etc) -- the code is fully automatically optimized (auto-tuned) for the target device and data characteristics (size, layout, etc).

Behind the scenes:

```
\label{eq:matvec} \begin{split} &\text{MatVec}^{<\text{T}\in\text{TYPE}\,|\,\text{I},\text{K}\in\mathbb{N}>} := \\ &\text{out\_view}<\text{T}>(\,\,\text{w}:(\text{i},\text{k})\mapsto(\text{i})\,\,)\circ\\ &\text{md\_hom}<\text{I},\text{K}>(\,\,^*,\,(^*,+)\,)\circ\\ &\text{inp\_view}<\text{T},\text{T}>(\,\,^*,(\text{i},\text{k})\mapsto(\text{i},\text{k})\,,\,\text{v}:(\text{i},\text{k})\mapsto(\text{k})\,\,) \end{split}
```

formally sound, auto-tunable lowering process



High-Level MDH Representation

- Expresses <u>what</u> to compute,
 via algebraic higher-order functions
- Agnostic from hardware and optimization details

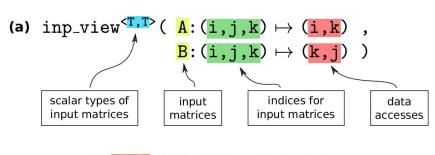
Low-Level MDH Representation

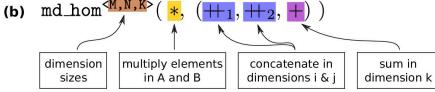
- Expresses <u>how</u> to compute, by explicitly expressing (de-)composition of computations
- straightforwardly transformable to executable program code

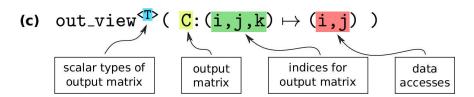
The MDH high-level representation at example Matrix Multiplication (MatMul):

MDH needs exactly three higher-order functions (patterns) to express data-parallel computations:

MDH pattern instances for MatMul:







Important functions can naturally be expressed as MDHs:

Linear Algebra

```
MatMul<...> = out_view<...>( ... ) o md_hom<...>( *, (++, ++, +) ) o inp_view<...>( ... )
 MatVec<...> = out_view<...>( ... ) o md_hom<...>( *, (++, +) ) o inp_view<...>( ... )
DOT<...> = out_view<...>( ... ) o md_hom<...>( *, (+) ) o inp_view<...>( ... )
                                                                                   Stencil Computations
   Access neighboring elements within
                                            Gaussian_2D<...> = out_view<...>( ... ) o md_hom( f_G, (++, ++) ) o inp_view<...>( ... )
                                              Jacobi_3D<...> = out_view<...>( ... ) o md_hom( f_J, (++, ++, ++) ) o inp_view<...>( ... )
            their input buffer
                                          Data Mining
                                                                                                      : Access user-defined combine operator that
                                                                                                            operates on user-defined data type
PRL<...> = out\_view<...>( ... ) o md_hom( weight, (++, <math>\otimes max) ) o inp_view<...>( ... )
```

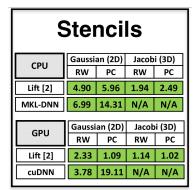
Quantum Chemistry

TC<...> = out_view<...>(...) o md_hom(*, (++,...,++ , +,...,+)) o inp_view<...>(...)

Further examples: MLP, SVM, ECC, ..., Mandelbrot, Parallel Reduction, ...

Often very <u>high dimensional</u>

(e.g., 7 dims)



[2] Hagedorn et. al, "High Performance Stencil Code Generation with LIFT.", CGO'18 (Best Paper Award).

MDH proved in previous work to achieve high performance on CPUs & GPUs [1]

[1] Rasch, Schulze, Gorlatch. "Generating Portable High-Performance Code via Multi-Dimensional Homomorphisms.", PACT'19

Linear Algebra						
CPU	GEI	MM	GEMV			
CPU	RW	PC	RW	PC		
Lift [6]	fails	3.04	1.51	1.99		
MKL	4.22	0.74	1.05	0.87		
GPU	GEI	ММ	GEMV			
GPU	RW	PC	RW	PC		
Lift [6]	4.33	1.17	3.52	2.98		
cuBLAS	2.91	0.83	1.03	1.00		

[6] Steuwer et. al, "Lift: A Functional Data-Parallel IR for High-Performance GPU Code Generation", CGO'17.

Quantum Chemistry									
GPU	Tensor Contractions								
GPO	RW 1	RW 2	RW 3	RW 4	RW 5	RW 6	RW 7	RW 8	RW 9
COGENT [3]	1.26	1.16	2.12	1.24	1.18	1.36	1.48	1.44	1.85
F-TC [4]	1.19	2.00	1.43	2.89	1.35	1.54	1.25	2.02	1.49

[3] Kim et. al. "A Code Generator for High-Performance Tensor Contractions on GPUs.", **CGO'19**.

[4] Vasilache et al. "The Next 700 Accelerated Layers: From Mathematical Expressions of Network Computation Graphs to Accelerated GPU Kernels, Automatically.", *TACO'19*.

Data Mining							
Probabilistic Record Linkage							
CPU -	2 ¹⁵	2 ¹⁶	2 ¹⁷	2 ¹⁸	2 ¹⁹	2 ²⁰	
EKR [5]	1.87	2.06	4.98	13.86	28.34	39.36	

[5] Forchhammer et al. "Duplicate Detection on GPUs.", HFSL'13.

Goal of this Work

Can MDH also

<u>express</u> DL computations and achieve

<u>high performance</u> for them?

→ Our WIP results look encouraging

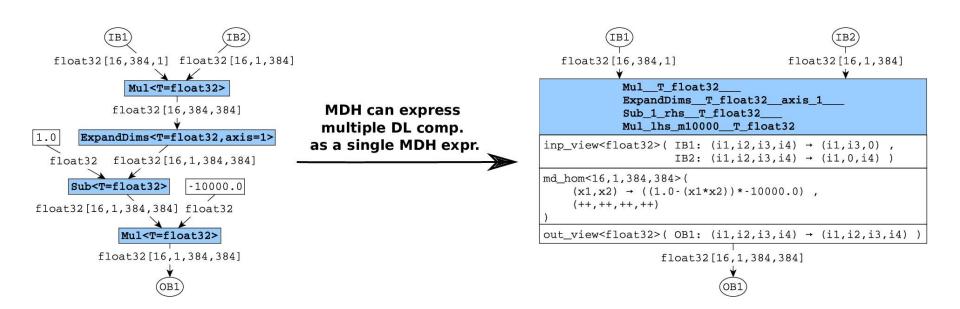
DL Computations Expressed in the MDH Formalism

Operator	out_view<>		om<>	inp_view<>	
Mu1<>	$OB1:(i,j)\mapsto (i,j)$	*	#,#	$IB1: (i,j) \mapsto (i,j),$ $IB2: (i,j) \mapsto (i,j)$	
Sub ^{<>}	$OB1\!:\!(\mathtt{i},\mathtt{j})\mapsto(\mathtt{i},\mathtt{j})$	1-11	#,#	$IB1: (i,j) \mapsto (i,j),$ $IB2: (i,j) \mapsto (i,j)$	
ExpandDims ^{<axis,d∈n ></axis,d∈n >}	$\mathtt{OB1:}(\mathtt{i}_1,\ldots,\mathtt{i}_D) \mapsto (\ldots,\mathtt{i}_{\mathtt{axis}-1},0,\mathtt{i}_{\mathtt{axis}},\ldots)$	id	#,,#	$IB1: (i_1, \ldots, i_D) \mapsto (i_1, \ldots, i_D)$	
BiasAddGrad ^{<nhwc< sup=""> ></nhwc<>}	$OB1:(i,j) \mapsto (j)$	id	+ , #	$IB1:(i,j)\mapsto (i,j)$	
BatchMatMul ^{<n,n ></n,n >}	OB1: $(b1,b2,i,j,k) \mapsto (b1,b2,i,j)$	*	#,,# , +	IB1: $(b1,b2,i,j,k) \mapsto (b1,b2,i,k)$, IB2: $(b1,b2,i,j,k) \mapsto (b1,b2,k,j)$	

Popular DL computations¹ are conveniently expressed in the MDH formalism.

¹ Taken from the TensorFlow implementation of the real-world BERT neural network.

DL Computations Expressed in the MDH Formalism



BERT Subgraph in **TensorFlow**

BERT Subgraph in **MDH**

2.9x faster than TVM for BiasAddGrad

1.5x faster than TensorFlow for BiasAddGrad

for a subgraph of BERT

1.1x faster than TVM

for BatchMatMul

Our preliminary experimental results on NVIDIA V100 GPU show that we can achieve **better performance** than well-performing **machine-** and **hand-optimized** approaches on real-world data sizes taken from the BERT neural network.

1.9_{X faster than} TC _{for} BatchMatMul

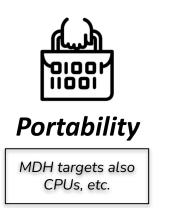
1.7x faster than TC for a subgraph of BERT

1.7x faster than TC for BiasAddGrad

4.9x faster than TensorFlow for a subgraph of BERT

Conclusion

MDH for DL— advantages we see:



Future Work:

- Automatizing "DL-subgraph-to-MDH-node" process, by exploiting MDHs' formal properties;
- Targeting sparse computations;
- Analyzing MDH for DL on **further architectures** (CPU, etc);
- ..

Thank you for listening!

3-year funded by DFG:

Performance, Portability, and Productivity for Deep Learning Applications on Multi- and Many-Core Architectures (PPP-DL)

Code artifact available:

https://gitlab.com/mdh-project/sc21_poster

Richard Schulze r.schulze@uni-muenster.de

Ari Rasch a.rasch@uni-muenster.de