MDH-DSL: Reduction-Aware Data
Student Research Competition Parallelism via Multi-Dimensional

CG O 2026 Homomorphisms

Sydney, Australia

Richard Schulze, Sergei Gorlatch

’ »\\\\\N Witieyey

s muunnii;rw,f,:_.;- :
oY e Universitat
Minster

—’—
Introduction

We present MDH-DSL.:

- expresses data-parallel computations
In a reduction-aware manner

- allows user-defined reduction operators

- is grounded in the MDH formalism [1]

[1] Rasch, "(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms", TOPLAS'24

e

Limitations of Existing DSLs

Halide program for MatVec (C++):

Func matvec (Func M, Func v, int K) {
Func w("w");
Var 1i;
RDom k (0, K);
w(i)
w(i) PB=

return w; }

— Limited to fixed set of built-in operators

e

Limitations of Existing DSLs

TVM program for MatVec (Python):

def matvec (I,K):

M = te.placeholder((I,K), dtype=’float32’
v = te.placeholder((K,) , dtype=’float32’
k = te.reduce_axis ((0,K), name =k’)

w = te.compute ((I,),

lambda i: [®e.sum (M[i,k] * v[k] , axis=k
return [M,v,w]

— Limited support for nested reductions

)
)

e

Limitations of Existing DSLs

Lift program for MatVec (Scala):

def matvec =
nFun (K => nFun (I =>
fun(M: [[float] K] I => fun(v: [float] K =>
M :>> map(fun(row =>
zip(v, row) :>> map(*) :>> reduce(+, 0)

)) D)))

— Struggles with nested reductions

e

Limitations of Existing DSLs

Linalg program for MatVec (MLIR):

func @matvec(%M: memref<128x64xf32>,
%v: memref<64xf32>,
%w: memref<128xf32>) {

13 iterator_types = ["parallel", ["reduction’]

14 } ins(YM, %v : memref<128x64xf32>,memref<64xf32>)
15 outs (%w : memref<128xf32>) {

; “bbO(¥%m: £32, Y%vk: £32, %acc: £32):

%prod = arith.mulf %m, %vk : £32

%sum = [arith.addf ’acc, %prod : £32

19 linalg.yield %sum : £32
20 }

21 return }

— Lacks explicit semantic information

—’—
Addressing the Limitations with MDH-DSL

MDH-DSL program for MatVec (Python):
— Reductions are

def matvec(T:BasicType, I:int, K:int): ﬁrSt-CIaSS Citizens

@mdh () dimension | | multiply elements

def matvec__T_I_K(O): .- sizes inMand v
return (R ———

out_view [(W =§"'/"t1ambda Bk () 1), concatenate — Reductions can

in dimension i

i e be user-defined
md_hom [[I3K] (fmul, (e, pu@dd) », S—

S o dimension k

inp_view [T;T1(M = [lambda i,k: (ESED 1 , = Nested Reductions
v = [lambda di,k: (K) 1) P
) oL can explicitly be
return matvec__T_I_K\‘\:“ iteratic;h speice d;ta expressed

| scalar types indices accesses

e

Evaluation: Performance Advantage for Nested Reductions

Case Study: Deep Learning (MCC) on NVIDIAA100 GPU

M MDH TVM

=4 3,5
E — Explicitly handling nested
o 2,0) .
£ 2 reductions achieves
‘::'; 0,2 0,5 I high performance
T —

Nested Flat

Reduction Reduction

e

Evaluation: Performance Advantage for Nested Reductions

Case Study: Data Mining (PRL) on NVIDIA A100 GPU

¥ MDH OpenACC M PPCG

10 97,2 11,4
§ = Explicitly handling custom
Q5 reduction operators
> 1,0 1,0 1,5 1,5 achieves high performance
0 . =

Real-World Input Artificial Input

e

Evaluation
172.5X faster than TVM 1.6X faster than TVM B5.1X faster than TVM
for Dot on NVIDIA GPU for MCC on NVIDIA GPU for Dot on Intel CPU

MDH-DSL enables better performance than
well-performing approaches on real-world data.

2.4X taster than cUDNN 1.1X faster than cUBLAS 6.1 X faster than EKR
for MCC on NVIDIA GPU for Dot on NVIDIA GPU for PRL on Intel CPU
3.9X faster than oneDNN 9.4X faster than PPCG 5.4X taster than Pluto

for MCC on Intel CPU for MCC on NVIDIA GPU for Dot on Intel CPU 1o

Student Research Competition

CGO 2026

Sydney, Australia

Questions?

https://richardschulze.net
r.schulze@uni-muenster.de

11

https://richardschulze.net
mailto:r.schulze@uni-muenster.de

e

Nested Reduction vs. Flat Reduction

: 01 02 05 06 : : 01 02 05 06

: 03 04 07 08 f 03 04 07 08

. 09 10 13 14 : : 09 10 13 14

: 11 12 15 16 : :

: lMD—RED : ll—RED TZ—RED

03 11 01 02 05 06 03\ (11

10 26 : : 04 06 12 14 10 26
19 27 : : 09 10 13 14 29 53
42 58 : : 20 22 28 30 52 84

lMD—RED : E ll—RED TZ_RED

014 : 01 02 05 06 01 02 05 06
036 04 06 12 14 04 06 12 14 :
082 5 13 16 25 28 o 13 16 25 28
136 : 24 28 40 44 24 28 40 44 12

11 12 15 16

