MDH-DSL: Reduction-Aware Data Parallelism
via Multi-Dimensional Homomorphisms

———— pniversitat Richard Schulze (r.schulze@uni-muenster.de), Sergei Gorlatch
Introduction 5 MDH-DSL
We present MDH-DSTL: - MDH-DSL program for MatVec (Python):

— expresses data-parallel computations in a

: i1 def matvec(T:BasicType, I:int, K:int):
reduction-aware manner . emdh () T |
e imension | | multiply elements
— allows user-defined reduction operators » def matvec_ T I _K(): .. sizes in M and v
' - 1 return (ya [
— grounded IN the MDH fOrmahsm [1] 5 out view[T] (W =.f"/[1ambda ik : (5D 1) o concatenate
) - T ~"| in dimension i
[1]1 Rasch, "(De/Re)-Composition of Data-Parallel Computations via . md hom [-‘j (f.mul , (-’;'-)), sum in
Multi-Dimensional Homomorphisms", TOPLAS'24 . M e dimension k
... 9 inp_view[EJT](M - [lambda E3E: (EBE) 1
L- = = .I: E = = DSL 10 v = [lambda i,k: (k) 1)
Imitations ot EXIsting S -~) R
H |d f M V C : 12 return matvec__T_I_K\‘\:* buffers iter;ﬁ.(sh space d;ita
alide program for MatVec (C++): : [scalar types o e
1 Func matvec (Func M, Func v, int K) { _
> | Fune WO . Comparison of DSL features regarding reductions:
+ RDom k(0, K); : Operators Nested Custom
5 w(i) = 0.0f; : DSL . . :
| - : Explicit Reductions | Operators
6 w(i) = M1, k) * v(k); .
o : TVM yes no limited
— Limited to fixed set of built-in operators ; Lift yes limited limited
: Linalg no no yes
MDH-DSL es es es
TVM program for MatVec (Python): Y Y Y
1 def matvec(I,K): : .
2 M = te.placeholder((I,K), dtype=’float32’) : Evaluatlon
3 v = te.placeholder((K,) , dtype=’float32’) :
: k= te.reduce_axis ((0,K), name =’k’) - Performance advantage for nested reductions
5 w = te.compute ((I,), :
6 lambda i: [EeWS@Em(M[i,k] * v[k] , |axis=k)) - Case Study: Deep Learning (MCC) on NVIDIA A100 GPU
7 return [M,v,w] '
® MDH TVM
— Limited support for nested reductions 4 3.5

— Explicitly handling nested
2,0 reductions achieves

Runtime (ms)
N

Lift program for MatVec (Scala): o 05 I high performance
1 def matvec = 0 B
2 nFun (K => nFun(I => : NeSte.d Flat.
3 fun(M: [[float] K] I => fun(v: [float] K => . Reduction Reduction
1 M :>> map(fun(row => : .
5 2ip(v. Tow) :>> map(s) :>> reduce(+, 0) Performance advantage for custom reductions
6)00 Case Study: Data Mining (PRL) on NVIDIA A100 GPU
— Struggles with nested reductions : B MDH | OpenACC M PPCG
: 10 97,2 11,4
— Explicitly handling custom

Linalg program for MatVec (MLIR): S .

alg program for MatVec () 3 reduction operators
1 func @matvec(:A,M: memref<128x64x£32>, é’. 1.0 1.0 1,5 1,5 aChieveS h|gh performance
2 ,v: memref<64xf32>, 0 i i T
3 VAR £<128x£32>) { .
| Yzero = arith. constant 0.0 : £32 ; Real-World Input ~ Artificial Input
5 linalg.fill ins(%zero : £32) e
6 outs (4w : memref<128x£f32>) 1 "
7 linalg. ic { - 7/ \'}
8 lﬁdfxigﬁ; = [: for D%tsx faster than TVM 1.6X faster than TVM 5.1X faste! than‘TCPU
9 affine_map<(i,k) -> (i,k)>, . on NV| t on Int€
N et tine M1) - (s : DIA GPy MCC on NVIDIA GPU ;Do
11 affine_map<(i,k) -> (i)> .
- o A — ; MDH-DSL enables better performance than
4} ins(UM, %v : memref<128x64xf32>,memref<64xf32>) : We||_perf0rming apprgaches on real-world data.
15 outs (4w : memref<128x£f32>) { .
16 “bb0(Ym: £32, Y%vk: £32, Yacc: £32):
1; ;:Is)llllcr)ld z w A:’zla,ccf ,v k"/(,p:rofcf 2: £32 2.4x faster than CUDNN 1.1X faster than cuBLA\Sj 9.AX faster than PPCG
19 linalg.yield %sum : £32 . forMCC o, NVIDIA Gpy - Dot on NVID AGP or MCG on NVIDIA GPU
20 + for O
21 return } 3-9X faster tha

" OneDNN 0.1x 'aster than EKR 5.4X faster than Pluto

for MC
Con Inte| CPy for PRL oy Inte] CPy iorDoton Intel CPU

— Lacks explicit semantic information

Student Research Competition

CGO 2026

Sydney, Australia

.

—~—~
v
g "..,. - \~1
. - :
3 : ‘ - L ’
-~ - . \' - »e
» 5 - - i
s _ - — - > o die
-
; 4 » "'"—' ‘ .
- L
» — -

