
Performance advantage for nested reductions

⇒ Explicitly handling nested
 reductions achieves
 high performance

Nested
Reduction

Flat
Reduction

Case Study: Deep Learning (MCC) on NVIDIA A100 GPU

MDH-DSL: Reduction-Aware Data Parallelism
via Multi-Dimensional Homomorphisms

Richard Schulze (r.schulze@uni-muenster.de), Sergei Gorlatch

We present MDH-DSL:
- expresses data-parallel computations in a
 reduction-aware manner
- allows user-defined reduction operators
- grounded in the MDH formalism [1]

Introduction

[1] Rasch, "(De/Re)-Composition of Data-Parallel Computations via
 Multi-Dimensional Homomorphisms", TOPLAS'24

MDH-DSL

Limitations of Existing DSLs

Halide program for MatVec (C++):

⇒ Limited to fixed set of built-in operators

TVM program for MatVec (Python):

⇒ Limited support for nested reductions

Lift program for MatVec (Scala):

⇒ Struggles with nested reductions

Linalg program for MatVec (MLIR):

⇒ Lacks explicit semantic information

buffers

scalar types
iteration space

indices
data

accesses

concatenate
in dimension i

sum in
dimension k

MDH-DSL program for MatVec (Python):

dimension
sizes

multiply elements
in M and v

Comparison of DSL features regarding reductions:

Evaluation

MDH-DSL enables better performance than
well-performing approaches on real-world data.

5.4x faster than Pluto

for Dot on Intel CPU

172.5x faster than TVMfor Dot on NVIDIA GPU

5.1x faster than TVM

for Dot on Intel CPU

6.1x faster than EKR
for PRL on Intel CPU

3.9x faster than oneDNNfor MCC on Intel CPU

1.6x faster than TVM
for MCC on NVIDIA GPU

2.4x faster than cuDNNfor MCC on NVIDIA GPU
1.1x faster than cuBLAS

for Dot on NVIDIA GPU 9.4x faster than PPCG

for MCC on NVIDIA GPU

Performance advantage for custom reductions

⇒ Explicitly handling custom
 reduction operators
 achieves high performance

Case Study: Data Mining (PRL) on NVIDIA A100 GPU

