
Expressing Hierarchical Code Optimizations
via MDH-Based Schedules

Ari Rasch
University of Muenster, Germany

a.rasch@wwu.de

Richard Schulze
University of Muenster, Germany

r.schulze@wwu.de

Sergei Gorlatch
University of Muenster, Germany

gorlatch@wwu.de

I. INTRODUCTION & RELATED WORK

Program code in state-of-the-art low-level approaches, like
CUDA and OpenCL, requires complex, hierarchical opti-
mizations to efficiently target the deep and complex mem-
ory and core hierarchies of modern architectures, such as
GPU and multi-core CPU. Modern compilers [1]–[6] auto-
matically generate well-performing low-level code from se-
quential programs; the optimization processes of these com-
pilers are often manually guided by a performance expert
who explicitly expresses low-level code optimizations (like
tiling and parallelization) in form of programs in a so-called
scheduling language. While such compilers with an expert-
guided optimization process have high performance potentials,
their scheduling languages usually consist of a set of fine-
grained, low-level commands which have to be composed
by the performance expert in complex ways for expressing
hierarchical optimizations, making the optimization process
complex, cumbersome, and error-prone for the expert.

We present our work-in-progress results toward a novel
compiler whose scheduling language is based on the approach
of Multi-Dimensional Homomorphisms (MDH) [7]. We argue
that our MDH-based scheduling language enables a structured,
hierarchical code optimization process, by offering scheduling
commands that systematically de- and re-compose computa-
tions to/from the memory and core hierarchies of state-of-the-
art architectures (GPUs, multi-core CPUs, etc). Thereby, the
performance expert expresses hierarchical code optimizations
in a concise and structured way, contributing to a simplified
code optimization process for the expert. To further simplify
the optimization process for the expert, we have integrated
the notion of auto-tuning into our language design (e.g., for
automatically identifying optimized tile size values), based on
the Auto-Tuning Framework (ATF) [8]. Moreover, by relying
on the MDH formalism and its algebraic foundation, we
can mathematically guarantee the expert the correctness of
optimizations expressed in our language.

Our first experiments on NVIDIA GPU and Intel CPU
show that our scheduling language is capable of expressing
optimization decisions of the popular deep learning compiler
TVM [2] (which suffers from weaknesses listed above) as
hierarchical code optimizations. Our experiments also confirm
that via auto-tuning, we are able to achieve better performance
than TVM on both architectures.

II. OVERVIEW

Figure 1 shows the overview of our approach. The original
work on MDHs takes as input a sequential C program; the
program is then transformed via different tools [7]–[11] to
executable program code, e.g., for GPU or CPU.

In this work, we extend the existing MDH workflow in
Figure 1 by the parts highlighted in red in the figure: we enable
expert users to incorporate expert knowledge about optimiza-
tions into the workflow, by introducing MDH-based schedules.
Our schedules conveniently express MDH optimizations, e.g.,
exploiting fast memory resources and parallelization, in a
structured, hierarchical way (discussed in the next section).
The user decisions are then incorporated in step 3© into the
generated code, rather than generating the code in step 3© as
generic in these decisions and requesting them later in step 4©
from the auto-tuner (as done in the original MDH work). By
incorporating the user into the optimization process, we enable
both: 1) possibly better optimization, as the auto-tuning system
might not always make the same high-quality optimization
decisions as a human expert; 2) faster auto-tuning process, as
some (or even all) optimization decisions are possibly made
by the user and thus do not require costly auto-tuning.

III. MDH-BASED SCHEDULES

We illustrate our MDH-based scheduling language by show-
ing how it is used for expressing the particular optimization
decisions of the TVM compiler; the decisions are made by
TVM’s recent Ansor [12] optimization engine. As our case
study, we use Matrix Multiplication (MatMul) on a real-
world input size taken from the ResNet-50 [13] neural network
when computing the popular ImageNet [14] data set – a case
study for which TVM is specifically designed and optimized.
To express MatMul in our approach, we provide our com-
piler: 1) a straightforward implementation of MatMul in the
C programming language; 2) a program in our scheduling
language describing to our compiler the optimizations to be
performed.

Listing 1 shows a program in our scheduling language – it
expresses TVM’s optimization decisions for NVIDIA A100
GPU when computing MatMul on input matrices of sizes
1×2048 and 2048×1000 taken from ResNet-50’s most time-
intensive MatMul computation (inference phase).

Our scheduling program hierarchically de- and re-composes
MatMul to the GPU’s memory and core hierarchies, in 3 steps

Polyhedral
Representation

MDH
Representation

Auto-Tunable
Code

CPU-Tuned
Code

pet [9] MDH-CG [7]
ATF [8]

GPU-Tuned
Code

ATF [8]① ③ ②
④ GPU

CPU
HCA [11]

HCA [11]

⑤

md_poly [10]Sequential
C Code

MDH-Based
Schedule

User

Fig. 1. Overview of our approach (contribution of this work highlighted in red)

1 // initialization
2 0: (de-)comp(1,1000,2048)
3 (A:DM[1,2] , B:DM[1,2] ; C:DM[1,2])
4 (GPU.x,GPU.y,GPU.z)
5
6 // parallelization over CUDA Blocks
7 1: (de-)comp(ˆ,20,ˆ)
8 (ˆ, ˆ ; ˆ)
9 (BLK.y,BLK.x,ˆ)

10
11 // using CUDA Shared & Register Memory
12 2: (de-)comp(ˆ,ˆ,512)
13 (A:SM[1,2] , B:SM[1,2] ; C:RM[1,2])
14 (ˆ,ˆ,ˆ)
15
16 // parallelization over CUDA Threads
17 3: (de-)comp(ˆ,1,4)
18 (ˆ , ˆ ; ˆ)
19 (THR.y,THR.x,ˆ)

Listing 1. MDH schedule expressing TVM+Ansor optimizations

discussed in the following. Lines 1-4 in Listing 1 are optional
in our approach and serve for completeness only.

a) Block Parallelization (lines 6-9): The original itera-
tion space1 (line 2) is split in tiles of size 1 × 20 × 2048
(line 7); symbol ˆ (a.k.a. caret) in line 7 indicates that
the tile size of the previous step (line 2) is re-used in the
first and third dimension, and in line 8 that no data layout
changes or copy operations are performed. Line 9 indicates
that the computations of tiles should be parallelized over
CUDA Blocks (BLK) in the first and second dimension.

b) Shared & Register Memory Utilization (lines 11-14):
Each of the (1× 20× 2048)-sized tiles of the previous step is
split hierarchically into further tiles of size 1× 20× 512; for
each of these new tiles, line 13 indicates that the corresponding
parts of input matrices A and B should be copied to CUDA’s
fast Shared Memory (SM), and that the result of the computed
parts should be stored in even faster Register Memory (RM);

c) Thread Parallelization (lines 16-19): Each tile of the
previous step is again split in tiles of size 1×1×4 that should
be computed in parallel by CUDA Threads (THR) (line 19).

The correctness of our scheduling programs are statically
verified, by checking the formal constraints defined by the
MDH formalism [15] (not discussed for brevity).

IV. AUTO-TUNING

Our scheduling language has integrated the notion of auto-
tuning: the user can leave optimization decision to the auto-

1For I×K and K×J input matrices, the iteration space is a tuple (I, J,K).

tuner [8], by using the question mark symbol. For example, if
we use in line 7 of Listing 1 symbol ? for the tile size in the
second dimension (instead of the particular tile size value 20),
our auto-tuner will try to automatically identify an optimized
tile size. Combining human expert knowledge with auto-
tuning is important, because auto-tuning might make better
performing decisions than humans for some optimizations
(like choosing particular tile size values), and auto-tuning
also enables using the same scheduling program for multiple
devices (a.k.a performance portability [16]).

When replacing in Listing 1 tile size values, memory
regions, and thread assignments by symbol ?, to leave these
decisions for the auto-tuner, we achieve after 3h tuning time a
performance gain of 2.22× over TVM’s original optimization
decisions in Listing 1 on NVIDIA A100 GPU (and of 2.67×
over NVIDIA’s popular cuBLAS [17] library). Moreover, we
achieve 1.79× better performance than TVM on NVIDIA
V100 GPU (1.14× over cuBLAS) with the same MDH
scheduling program after a new auto-tuning run (performance
portability); for TVM, we use its V100-optimized schedule
program to make experimenting challenging for us. Similarly,
when expressing TVM’s OpenCL optimization decisions for
Intel Broadwell E5-2683 CPU in our scheduling language,
but making optimization decisions auto-tunable, we achieve
a performance gain over TVM of 1.53× (and of 1.36×
over Intel’s oneMKL [18] library). For further deep learning
computations, e.g., convolutions, we achieve similar, encour-
aging performance results, e.g., 1.29× better performance than
TVM+Ansor on Intel Broadwell E5-2683 CPU for the most
time-intensive convolution computation within ResNet50’s in-
ference phase.2

V. FUTURE WORK

We plan to extend our scheduling language toward multi-
device systems (which may consist of multiple GPUs and/or
CPUs) and also multi-node systems (a.k.a. MPI+X), using
the same hierarchical optimization approach as in Listing 1.
Moreover, we aim to extend the set of C programs accepted
as input by our approach (currently, limited to perfect loop
nests with static loop bounds), based on polyhedral compila-
tion techniques [10]. Also, we will significantly extend our
experiments toward further deep learning computations, as
well as computations different from deep learning [20]–[22].

2We provide an artifact for reproducing experimental results [19].

REFERENCES

[1] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful dataflow multigraphs: A data-centric model for performance
portability on heterogeneous architectures,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19, 2019.

[2] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and
A. Krishnamurthy, “TVM: An automated End-to-End optimizing
compiler for deep learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[3] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
2019, pp. 193–205.

[4] B. Hagedorn, A. S. Elliott, H. Barthels, R. Bodik, and V. Grover,
“Fireiron: A data-movement-aware scheduling language for gpus,”
in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 71–82.
[Online]. Available: https://doi.org/10.1145/3410463.3414632

[5] B. Hagedorn, J. Lenfers, T. Kundefinedhler, X. Qin, S. Gorlatch,
and M. Steuwer, “Achieving high-performance the functional way:
A functional pearl on expressing high-performance optimizations as
rewrite strategies,” Proc. ACM Program. Lang., vol. 4, no. ICFP, Aug.
2020. [Online]. Available: https://doi.org/10.1145/3408974

[6] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 519–530.
[Online]. Available: https://doi.org/10.1145/2491956.2462176

[7] A. Rasch, R. Schulze, and S. Gorlatch, “Generating portable high-
performance code via multi-dimensional homomorphisms,” in 2019 28th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2019, pp. 354–369.

[8] A. Rasch, R. Schulze, M. Steuwer, and S. Gorlatch, “Efficient auto-
tuning of parallel programs with interdependent tuning parameters via
auto-tuning framework (atf),” ACM Trans. Archit. Code Optim., vol. 18,
no. 1, jan 2021. [Online]. Available: https://doi.org/10.1145/3427093

[9] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Second
International Workshop on Polyhedral Compilation Techniques (IM-
PACT’12), Paris, France, January 2012.

[10] A. Rasch, R. Schulze, and S. Gorlatch, “md_poly: A performance-
portable polyhedral compiler based on multi-dimensional homomor-
phisms,” in Proceedings of the International Workshop on Polyhedral
Compilation Techniques (IMPACT’20), 2020, pp. 1–4.

[11] A. Rasch, J. Bigge, M. Wrodarczyk, R. Schulze, and S. Gorlatch,
“docal: high-level distributed programming with opencl and cuda,”
The Journal of Supercomputing, vol. 76, no. 7, pp. 5117–5138, 2020.
[Online]. Available: https://doi.org/10.1007/s11227-019-02829-2

[12] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen, J. E. Gonzalez, and I. Stoica, “Ansor: Generating
high-performance tensor programs for deep learning,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, Nov. 2020, pp. 863–879. [Online].
Available: https://www.usenix.org/conference/osdi20/presentation/zheng

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[15] A. Rasch and S. Gorlatch, “Multi-dimensional homomorphisms and
their implementation in opencl,” International Journal of Parallel
Programming, vol. 46, no. 1, pp. 101–119, 2018. [Online]. Available:
https://doi.org/10.1007/s10766-017-0508-z

[16] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A metric for performance
portability,” 2016. [Online]. Available: https://arxiv.org/abs/1611.07409

[17] NVIDIA, “cuBLAS,” https://developer.nvidia.com/cublas, 2022.
[18] Intel, “oneMKL,” https://github.com/oneapi-src/oneMKL, 2022.
[19] Artifact Implementation, “https://www.gitlab.com/mdh-

project/hipar22 artifact,” 2022.
[20] L.-N. Pouchet. (2015) PolyBench/C: the Polyhedral

Benchmark Suite. [Online]. Available: http://web.cse.ohio-
state.edu/ pouchet.2/software/polybench/

[21] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, p. 27,
2012.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

