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Abstract
Polyhedral compilers automatically parallelize sequential
programs for multi- and many-core architectures, such as
CPU and GPU. However, parallel code generated by state-of-
the-art polyhedral compilers often lacks performance porta-
bility, because the existing compilers are usually optimized
toward only a single particular architecture (e.g., GPU). More-
over, even on their target architecture, polyhedral compilers
sometimes fail to reach high performance, because they of-
ten miss important optimizations, e.g., efficiently exploiting
fast memory resources.
We present our work-in-progress results for md_poly –

a novel polyhedral compiler that generates portable high-
performance code from sequential C programs with perfect
loop nests and rectangular iteration domains. In contrast
to the existing polyhedral compilers, md_poly relies on the
code generation approach for Multi-Dimensional Homomor-
phisms (MDHs): we show that the internal program represen-
tation of polyhedral compilers (a.k.a. polyhedral model) can
be automatically transformed into an equivalent MDH repre-
sentation; this representation is suitable for generating high-
performance program code that is performance portable
over different architectures. Our preliminary experimental
comparison against PPCG with two benchmarks – Gaussian
Convolution and Matrix Multiplication – shows encouraging
results: speedups up to 7× on Intel CPU and 3× on NVIDIA
GPU on real-world input sizes from deep learning.

1 Motivation
Programming state-of-the-art parallel architectures such as
multi-core CPU and many-core GPU is challenging. For high
performance, the programmer has to optimize its source code
for the complex hardware of modern parallel devices which
are characterized by deep and complex core and memory
hierarchies. Moreover, for portable performance over such
architectures, the programmer has to consider that architec-
tures may differ significantly in their characteristics, e.g., the
number of cores and sizes of caches.

Polyhedral compilers [1, 21, 24] simplify parallel program-
ming by automatically parallelizing sequential program code,
e.g., implemented in the C programming language. For this,
a polyhedral compiler extracts from the sequential program
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code the so-called polyhedral model – a mathematical repre-
sentation of the code, which captures important information,
e.g., the number of loop iterations and memory access re-
lations (read and/or write). The extracted model is then
optimized by the compiler via so-called affine transforma-
tions which enable important optimizations, e.g., tiling.

State-of-the-art polyhedral compilers have a major weak-
ness: they are usually optimized toward only a single par-
ticular architecture (e.g., only GPU) and thus, they often
fail to reach high performance on other architectures (e.g.,
multi-core CPU). For example, we demonstrate experimen-
tally that the popular polyhedral compiler PPCG (Polyhedral
Parallel Code Generator) [24] reaches lower relative perfor-
mance on Intel CPU than on NVIDIA GPU as compared
to hand-optimized approaches. Moreover, our experiments
show that PPCG sometimes fails to reach high performance
also on NVIDIA GPU, because its generated code lacks im-
portant optimizations, e.g., efficiently exploiting fast memory
resources.

In this paper, we present our work-in-progress results for
md_poly – a novel compiler, with a polyhedral front end, that
generates portable high-performance code for both multi-
and many-core architectures, e.g., Intel CPU and NVIDIA
GPU. For this, md_poly relies on the code generation ap-
proach for Multi-Dimensional Homomorphisms (MDH) [13,
16]: we demonstrate that the polyhedral program representa-
tion – currently limited to programs with perfect loop nests
and rectangular iteration domains – can be automatically
transformed into an equivalent MDH representation which
is suitable for generating high-performance code that is per-
formance portable over different architectures (e.g., CPU and
GPU) [16].

Our preliminary experiments show encouraging results: we
show that md_poly achieves better performance than the
popular polyhedral compiler PPCG – by up to 7× on CPU and
3× on GPU – on two benchmarks taken from the Polybench
suite [11]: Gaussian Convolution and Matrix Multiplication
on real-world input sizes from deep learning.

2 Overview
Figure 1 demonstrate the overview of md_poly’s internal de-
sign. Starting from a sequential C program (with perfect loop
nests and rectangular iteration domains), we first extract in
step 1○ in the figure the polyhedral model – this is same step
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Figure 1. Overview of md_poly’s internal design.

in all C-based polyhedral compilers – using the Polyhedral Ex-
traction Tool (pet) [23]. Afterwards, we transform in step 2○
the extracted polyhedral model into an equivalent MDH rep-
resentation [13] – this transformation is the focus of this
paper and discussed in the next section. The MDH represen-
tation is suitable for generating portable high-performance
code: we use the MDHs’ code generator (MDH-CG) [16] in
step 3○ to transform the MDH representation into an au-
tomatically optimizable (auto-tunable) OpenCL code; the
generated code is then auto-tuned in step 4○ for different
target architectures and input sizes using the Auto-Tuning
Framework (ATF) [14, 15]. We execute the automatically gen-
erated and auto-tuned OpenCL code in step 5○ using the
dOCAL framework [12, 17].

3 Approach
The focus of this paper is the transformation of the extracted
polyhedral model into an equivalent MDH representation
(step 2○ in Figure 1).

In the following, we first briefly recapitulate the defini-
tions of MDHs and their corresponding Domain-Specific
Language (DSL) [13]. Afterwards, we demonstrate how the
polyhedral model can be transformed into an equivalent
expression in the the DSL for MDHs.

3.1 Multi-Dimensional Homomorphism
Multi-Dimensional Homomorphisms (MDHs) are formally
defined as follows.

Definition 3.1. Let T and T ′ be two arbitrary data types.
A function h : T [N1 ] . . . [Nd ] → T ′ on d-dimensional ar-
rays of size N1 × . . . × Nd and with elements in T is called
a Multi-Dimensional Homomorphism (MDH) iff there exist
combine operators ⊛1, . . . , ⊛d : T ′ ×T ′ → T ′, such that for
each integer k ∈ [1,d] and arbitrary, concatenated input
array a ++k b in dimension k , the homomorphic property is
satisfied:

h( a ++k b ) = h(a) ⊛k h(b)

In words: the value of h on a concatenated array in dimen-
sion k can be computed by applying h independently to
array’s parts a and b, and then combining the results by
combine operator ⊛k .

We express MDHs using their high-level Domain-Specific
Language (DSL) [13], as follows. Every MDH h is uniquely

determined by its combine operators ⊛1, . . . , ⊛d and its be-
havior f on scalar values (i.e., f (a[0] . . . [0] ) = h(a) for
every a ∈ T [1] . . . [1]). This enables expressing h using the
md_hom parallel pattern [13] which takes these functions as
parameters:

h = md_hom( f , (⊛1, . . . , ⊛d ) )

= ⊛1
i1∈[1,N1]

. . . ⊛d
id ∈[1,Nd ]

f ( a[ i1 ] . . . [ id ] )

We demonstrate the usage of md_hom – the basic building
block of MDHs’ DSL – based on the example of Matrix Mul-
tiplication (MatMul):

MatMul = md_hom( ∗, (++1,++2, +) ) ◦ view_MatMul (1)

Formula 1 shows MatMul expressed as an instance of the
md_hom parallel pattern. We first fuse the domain-specific in-
put of MatMul – twomatrices A∈T[ M ][ K ] and B∈T[ K ][ N ]
of type T (e.g., T=float or double) – to a 3-dimensional ar-
ray comprising pairs of type T2. For this, we use pattern view
which MDHs’ DSL provides to uniformly prepare a domain-
specific input for md_hom. For MatMul, its view function
view_MatMul is defined as: view(A,B)(i,j,k) (A[ i ][ k ],
B[ k ][ j ]); it takes as input the twomatrices A and B and the
array indices i, j, k; it yields the pair (A[ i ][ k ], B[ k ][ j ]).
After fusing MatMuls’s two input matrices via view_MatMul,
we apply MatMul’s scalar function f=* (multiplication) to
each output pair of view_MatMul, and we combine the ob-
tained results in dimension 1 and 2 by concatenation (i.e.,
⊛1, ⊛2 = ++), and in dimension 3 by addition (⊛3 = +).

3.2 Transformation: Polyhedral Model to MDH
Representation

We show how the polyhedral model can be transformed
into an equivalent MDH representation (step 2○ in Figure 1)
consisting of patterns md_hom and view. For this, for the
input parameters of pattern view, we have to extract from
the polyhedral model the following information:

1. the input data (e.g., matrices A and B for MatMul);
2. the access indices (i,j,k for MatMul);
3. the accessed data (A[ i ][ k ] and B[ k ][ j ]).

For pattern md_hom’s parameters, we need:
4. the scalar function (e.g., f=*);
5. the combine operators (e.g., ⊛1, ⊛2= ++).

To auto-tune and execute our generated OpenCL code, we
need moreover:
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6. the data types of the input (e.g., float);
7. the input sizes (e.g., M,N,K for MatMul);
For brevity, we present in this paper our transformation –

from the polyhedral model to theMDH representation – only
for md_hom’s parameters (points 4. and 5. above), using the
simple but important example of MatMul in Listing 1.

1 for( int i = 0; i < M; ++i )

2 for( int j = 0; j < N; ++j )

3 for( int k = 0; k < K; ++k )

4 C[i][j] += A[i][k] * B[k][j];

Listing 1. Sequential Matrix-Matrix Multiplication in C.

Scalar Function Listing 2 shows the already generated
scalar function of MatMul’s md_hom expression in Formula 1.
The function’s basic building block (line 2) is the loops’
body in line 4 of Listing 1, which we extract straightfor-
wardly from the polyhedral model [23]. We set variables with
read or read-write accesses – which are in line 4 of List-
ing 1: i) read accesses A[i][k] and B[k][j]; ii) read-write
access C[i][j] – as the arguments of function f (line 1
in Listing 2); variables with write access – not existent in
Listing 1 – would be declared and zero initialized at the
beginning of f’s function definition. We return the value
of variables with write or read-write accesses at the end
of f’s definition (line 3 in Listing 2). Note that MatMul’s
scalar function in Listing 2 performs also addition + (line 2)
and thus differs from the scalar function of MatMul in For-
mula 1 (which is multiplication * only). This is because in
our generated code, we are not able to compute MatMul’s
combine operator + (see Formula 1) in parallel, as discussed
in the following.

1 T f( T A_i_k , T B_k_j , T C_i_j ){

2 C_i_j += A_i_k * B_k_j;

3 return C_i_j; }

Listing 2. Scalar function of MatMul.

Combine Operators In general, combine operators differ-
ent from concatenation ++ (e.g., addition +) cannot be cap-
tured in (and thus extracted from) the polyhedral model [4,
18, 19]: automatically identifying such combine operators
would require a complicated semantic analysis of the sequen-
tial code in Listing 1. We provide two different solutions to
circumvent this problem: 1) ignoring the parallelism poten-
tial in such dimensions (e.g., as in PPCG); for the depen-
dence analysis, we use isl [22] (in exactly the same way
as PPCG); 2) requesting combine operators explicitly from
the user; for example, in case of MatMul, the user annotates
the code in Listing 1 with the following (OpenMP-like [3])
directive: #mdh parallel (++,++,+:C[i][j]). For a fair
comparison with PPCG, we experiment in the next section
with solution 1).

4 Experimental Evaluation
All our experiments can reproduced using our artifact imple-
mentation [5].
Figure 2 shows the speedup of md_poly’s automatically

generated and optimized code – for benchmarks Gaussian
Convolution (left) andMatrix Multiplication (right) from Poly-
bench [11] (for Gaussian, we use the most-recent version
in [20]) – over PPCG and hand-optimized vendor libraries (VL).
As VLs, we use Intel MKL-DNN [6] and NVIDIA cuDNN [9]
for Gaussian Convolution; for Matrix Multiplication, we use
Intel MKL [7] and NVIDIA cuBLAS [10]. We experiment
on both Intel Xeon E5-2640v2 CPU and NVIDIA V100 GPU.
As input sizes, we use i) real-world sizes (abbreviated with
RW in the figure) from deep learning, and ii) sizes that are
preferable for PPCG (abbreviated with PP). For example, we
use for Gaussian a real-world input size of 1×512×7×7×512
taken from the deep-learning framework TVM [2], and for
Matrix Multiplication, we use input matrices of size 10x64
and 64x500 which are repeatedly called in the Caffe deep-
learning framework [8]. As PP sizes, we use for Gaussian
1x1x4096x4096x1 and for Matrix Multiplication, we use
square input matrices of sizes 1024. We auto-tune the pro-
grams generated by md_poly and the optimization parame-
ters of PPCG both for 48h – the wall time of our system –
using the Auto-Tuning Framework (ATF) [14].

RW PP RW PP RW PP RW PP

G
F
/s 155 208 871 4195 22 340 107 9777

S
P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

G
F

/s

20 44 660 3721 11 74 106 9481

S
P 7.78 4.75 1.32 1.13 2.03 4.58 1.01 1.03
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Figure 2. Speedup (higher is better) of md_poly’s auto-
matically generated and optimized code over: i) PPCG,
and ii) hand-optimized vendor libraries (VL).

We observe competitive and often better performance of
md_poly than both PPCG and vendor libraries. As compared
to PPCG, md_poly’s better performance is because our gener-
ated OpenCL code has more tunable parameters than PPCG,
e.g., parameters for enabling/disabling using OpenCL’s fast
local and private memory resources [16]; thereby, we en-
able a more fine-grained optimization of our generated code.
In comparison to vendor libraries, we rely on auto-tuning,
while the libraries use hand-crafted heuristics.
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