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Abstract
We introduce pyATF – a new, language-independent, open-
source auto-tuning tool that fully automatically determines
optimized values of performance-critical program parame-
ters. A major feature of pyATF is its support for constrained
parameters, e.g., the value of one parameter has to divide the
value of another parameter. A further major feature of pyATF
is its user interface which is designed with a particular focus
on expressivity and usability for real-world demands, and
which is offered in the increasingly popular Python program-
ming language. We experimentally confirm the practicality
of pyATF using real-world studies from the areas of quantum
chemistry, image processing, data mining, and deep learn-
ing: we show that pyATF auto-tunes the complex parallel
implementations of our studies to higher performance than
achieved by state-of-practice approaches, including hand-
optimized vendor libraries.

CCS Concepts: • Software and its engineering → Com-
pilers.
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1 Introduction
Auto-tuning [9] is a popular technique for automatically op-
timizing programs for a particular target architecture and
characteristics of the input and output data (e.g., size and
memory layout) [73]. To use auto-tuning, the user imple-
ments – or a compiler generates – the target program as
generic in performance-critical parameters (a.k.a. tuning pa-
rameters), such as sizes of tiles and numbers of threads, and
an auto-tuning tool then fully automatically identifies an
architecture- and data-optimized configuration of these pa-
rameters.
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Framework Year API Constr. Targets
OpenTuner [6] 2014 Python × ∗
CLTune [47] 2015 C++ (✓) OpenCL
Kernel Tuner [75] 2019 Python (✓) OpenCL,CUDA, . . .
HyperMapper [45] 2019 JSON × ∗
KTT [50] 2020 C++ (✓) OpenCL,CUDA, . . .
ytopt [79] 2021 Python (✓) ∗
ATF [61] 2021 DSL ✓ ∗
BaCO [29] 2023 JSON ✓ ∗
pyATF (this work) 2024 Python ✓ ∗

Figure 1. State-of-the-art generic auto-tuning tools (includ-
ing pyATF). The symbol × means that constraints are not
supported, and symbol “∗” denotes that programs in any
target programming language can be auto-tuned.

Auto-tuning has already been successfully used in various
important application domains, including linear algebra [77]
and stencil computations [17], and it can be broadly classi-
fied into two categories: 1) the traditional, non-generic tools
which are specifically designed and tied to a particular ap-
plication domain (e.g., only linear algebra [77]), and 2) the
recent, generic auto-tuning tools that can be used for arbi-
trary kinds of domains.
Our work is inspired by generic auto-tuning approaches

due to their broad applicability, particularly in the area of
compiler construction [9]. An overview of the state-of-the-
art generic auto-tuning tools is given in Figure 1.
Each generic auto-tuner offers the user an interface in a

particular API (Application Programming Interface), e.g., a
Python-based API (as OpenTuner) or an API based on C++
(as CLTune). Using the API, the user defines the search space
of the program to be tuned, starts the auto-tuning process,
sets an abort condition that stops the tuning process (e.g., a
time interval), etc.

Generic auto-tuners also differ in terms of their support for
so-called constraints on tuning parameters [61]. Efficiently
supporting constraints has proven to be essential for auto-
tuning contemporary parallel implementations that target
state-of-the-art parallel architectures [29, 61], e.g., due to the
hierarchically arranged layers of memories and cores of these
architectures. For example, the value of a tile size tuning
parameter on an upper memory layer usually has to be con-
strained as a multiple of a tile size for a lower memory layer,
because a lower-layer tile is a chunk of an upper-layer tile.
Rasch et al. [61] introduce optimized concepts for implement-
ing efficient, constraint-supporting auto-tuning tools; these
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concepts have been implemented in the ATF tuner [61] (de-
noted via a check mark symbol in Figure 1) and been adopted
by BaCO [29] to achieve high auto-tuning efficiency for con-
strained tuning parameters. In contrast, earlier approaches,
e.g., CLTune, have only limited support for constraints (they
support only small search spaces when constraints are used,
as we discuss later – denoted by parentheses around check
mark symbols in Figure 1), and approaches OpenTuner and
HyperMapper have no support for constraints at all, which
severely limits their applicability (as we also discuss later).
Auto-tuners and their interfaces also differ in terms of

their generality. For example, while OpenTuner can be used
for auto-tuning programs implemented in arbitrary pro-
gramming languages (indicated via symbol * in Figure 1),
CLTune is specifically designed for auto-tuning OpenCL pro-
grams only.

We introduce pyATF1,2 – a new, generic, publicly available
open-source auto-tuning tool whose interface is designed
with a particular focus on usability and expressivity for real-
world demands (firstmajor contribution), andwhich combines
three major advantages of the state-of-the-art auto-tuning tools
listed in Figure 1 (second major contribution):

1. pyATF’s user interface is designed in the Python pro-
gramming language which is becoming increasingly
important in both academia and industry, e.g., due to
its ease of use even for non-expert users [1];

2. pyATF efficiently supports constraints on tuning pa-
rameters – by internally implementing and relying on
state-of-the-art auto-tuning techniques [61] – thereby
enabling an efficient auto-tuning process for modern
parallel implementations;

3. pyATF is designed as generic in the target program-
ming language such that it can be used for auto-tuning
programs written in arbitrary programming languages.

Our experiments on GPU and CPU confirm that pyATF
achieves high auto-tuning efficiency compared to the state-
of-the-art auto-tuning tools listed in Figure 1, using real-
world case studies from important domains: quantum chem-
istry, image processing, data mining, and deep learning.

The paper is structured as follows. After summarizing the
state-of-the-art generic auto-tuning tools in Section 2, we
illustrate pyATF’s design and functionality in Section 3, and
we argue that pyATF is easier to use and more expressive
than the current state-of-the-art generic auto-tuning tools.
We present experimental results in Section 4, discuss related
work in Section 5, and we conclude in Section 6.

2 State of the Art in Generic Auto-Tuning
Our pyATF tool aims to i) combine the advantages of the state-
of-the-art auto-tuning tools listed in Figure 1 and ii) hide
1pyATF is documented and available open source: https://atf-tuner.org
2We call our tool pyATF, because i) it is based on python, and ii) it internally
uses the same theoretical auto-tuning foundation as ATF [61].

1__kernel void saxpy( const int N,

2const float a,

3const __global float* x,

4__global float* y

5)

6{

7for( int w = 0; w < WPT; ++w )

8{

9const int index = w * get_global_size (0)

10+ get_global_id (0);

11
12y[ index ] += a * x[ index ];

13}

14}

Listing 1. Auto-tunable SAXPY kernel from the OpenCL
CLBlast library [46] (simplified)

these advantages behind a new, productive, and user-friendly
interface for auto-tuning (which is described in Section 3).

In the following, we highlight the advantages of the state-
of-the-art generic auto-tuning tools – in terms of their: 1)API,
2) support for Constraints, and 3) supported Targets – see
Figure 1. For this, we focus on BaCO and ytopt, because
BaCO is the latest auto-tuning tool that supports constraints
on tuning parameters, and ytopt is the latest auto-tuner
whose API is based on Python – both tools support programs
written in arbitrary target programming languages.

We illustrate the user interfaces of BaCO and ytopt (to
compare them later with pyATF’s interface) using the sim-
ple, illustrative example SAXPY of the auto-tunable CLBlast
OpenCL library [46]. The SAXPY computation takes as argu-
ments the input size 𝑁 , a floating-point value 𝑎, and two 𝑁 -
sized vectors 𝑥 and𝑦 of floating-point values, and it computes
for all 𝑖 ∈ {1, . . . , 𝑁 }:

𝑦 [ 𝑖 ] = 𝑎 ∗ 𝑥 [ 𝑖 ] + 𝑦 [ 𝑖 ]

Listing 1 shows CLBlast’s OpenCL implementation of
SAXPY. The kernel is executed on a device (e.g., a GPU) in
parallel by several Work-Items (WIs) — the OpenCL term
for thread. Each WI computes a WPT-sized tile (line 7) of the
result vector – WPT is a tuning parameter and thus has to
be replaced by a concrete value that is optimized for the
particular target architecture and input size 𝑁 (e.g., using
one of the auto-tuning tools listed in Figure 1). The WIs it-
erate over their corresponding tile of the input (line 7), and
each WI computes in each iteration the index of the input
elements of 𝑥 and 𝑦 (line 9) to be used in the computation of
SAXPY (line 12). OpenCL requires work-items to be grouped
into Work-Groups (WGs) [34]. The number of work-items
per work-group is called Local Size (LS) which is a further
tuning parameter. The local size is set in the so-called host
code [34] (not presented for brevity) which is used in OpenCL
to invoke the kernel on a device.
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For the correctness of the SAXPY kernel, WPT must divide
the input size N – a constraint on the WPT tuning parameter –
such that each WI processes an equally sized tile of the input.
Moreover, the OpenCL specification requires the local size
LS to divide the Global Size (GS) – a constraint on tuning
parameter LS. The GS is the total number of work-items in
OpenCL, and it is set as N/WPT in the case of the SAXPY kernel.
Analogously to the local size, the global size is set in the host
code when invoking the kernel.

2.1 Constraint-Supporting Auto-Tuner
BaCO [29] is the latest auto-tuning tool for programs with
constrained tuning parameters. It is implemented within
the HyperMapper [45] framework, and it handles constraints
according to the concepts by Rasch et al. [61]. In BaCO, the
tuning process is specified via a JSON file, and the process is
started via an additional Python program.
Listing 2 shows the BaCO JSON file for auto-tuning the

SAXPY example in Listing 1; the BaCO Python program for
running the JSON file is presented in Listing 3.
In Listing 2, lines 1-4 specify metainformation for BaCO,

and lines 5 and 6 choose the search technique and abort
condition. Afterwards, lines 7-18 define the search space
based on tuning parameters: i) parameter WPT (line 8) is
defined as an integer value (line 9) in the interval from 1
to the input size 1000 (line 10)3, and it has to evenly divide
the input size (line 11); ii) parameter LS (line 13) is defined
similarly to parameter WPT, but has to evenly divide the input
size divided by WPT (lines 16-17).
1 { "application_name ": "saxpy",

2 "optimization_objectives ": [" runtime"],

3 "output_data_file ": "./ saxpy.csv",

4 "log_file ": "./ saxpy.log",

5 "optimization_method ":" bayesian_optimization",

6 "optimization_iterations ": 50,

7 "input_parameters ": {

8 "WPT": {

9 "parameter_type ": "integer",

10 "values ": [1, 1000],

11 "constraints ": ["1000 % WPT == 0"],

12 "dependencies ": [] },

13 "LS": {

14 "parameter_type ": "integer",

15 "values ": [1, 1000],

16 "constraints ": ["(1000 / WPT) % LS == 0"],

17 "dependencies ": ["WPT"]

18 } } }

Listing 2. BaCO JSON tuning file for auto-tuning SAXPY

Listing 3 shows the corresponding BaCO Python program
which implements a cost function (lines 2-4) that compiles,
runs, and measures the runtime of the SAXPY kernel for a par-
ticular tuning configuration. The program starts the tuning
process (line 7) based on the BaCO JSON file in Listing 2.
3BaCO requires hard coding the input size because it relies on JSON.

1# Implement a Cost Function

2def cost_function(config ):

3# ... SAXPY Kernel & Host Code (>50 LOC)

4return {'valid ': valid , 'runtime ': runtime}

5
6# Generate & Explore the Search Space

7hypermapper.optimize('spec.json', cost_function)

Listing 3. BaCO Python program for running the tuning file
in Listing 2

2.2 Python-Based Auto-Tuner
The ytopt [79] tool is the latest auto-tuner that offers a
Python-based user interface.

Listing 4 shows the ytopt Python program for auto-tuning
the OpenCL SAXPY example in Listing 1. The search space
is defined using tuning parameters (lines 5-14 of Listing 4),
analogously as in the BaCO program in Listing 2. However, in
contrast to BaCO, the ytopt tool defines constraints (lines 13-
14 in Listing 4) on entire parameter configurations, whereas
BaCO defines constraints on individual parameters (Listing 2,
lines 11 and 16) – this ATF-inspired constraint design [61]
allows BaCO to internally use the optimized processes of
search space generation, storing, and exploration introduced
by Rasch et al. [61]. Afterwards, in lines 17-19 of Listing 4,
the cost function for SAXPY is defined (the same as in the
BaCO program in Listing 3, lines 2-4), and ytopt’s exploration
process is specified in lines 22-26 of Listing 4.

1# Input Size

2N = 1000

3
4# Generate the Search Space

5cs = CCS.ConfigurationSpace ()

6WPT = CCS.IntNumericalParameter(name='WPT',

7lower=1 ,

8upper=N+1 )

9LS = CCS.IntNumericalParameter(name='LS',

10lower=1 ,

11upper=N+1 )

12cs.add_parameters ([WPT , LS])

13cs.add_forbidden_clause(f'({N}%WPT) != 0'))

14cs.add_forbidden_clause(f'(({N}/WPT)%LS) != 0')

15
16# Implement a Cost Function

17def cost_function(config ):

18# ... SAXPY Kernel & Host Code (>50 LOC)

19return runtime

20
21# Specifiy the Tuning Problem

22Problem = TuningProblem(

23task_space=None ,

24input_space=cs,

25output_space=Space([Real (0.0,inf)]),

26objective=cost_function

27)

Listing 4. ytopt Python program for auto-tuning SAXPY

37



CC ’25, March 1–2, 2025, Las Vegas, NV, USA R. Schulze, S. Gorlatch, A. Rasch

3 pyATF: Design and Illustration4

Listing 5 demonstrates how pyATF is used for auto-tuning
the SAXPY kernel in Listing 1. The pyATF program in Listing 5
is written in Python and performs three main steps required
for auto-tuning.
In the following, we explain the pyATF program in List-

ing 5, step by step, and we argue that pyATF is easier to
use and more expressive (e.g., regarding expressing con-
straints and setting abort conditions) than the two existing,
state-of-the-art auto-tuning tools BaCO (Listings 2 and 3) and
ytopt (Listing 4).

3.1 Step 1: Generating the Search Space
Analogously to BaCO and ytopt (Listings 2 and 4), pyATF gen-
erates the search space based on user-defined tuning param-
eters (Listing 5, lines 5-10). To efficiently handle and manage
the search space of constrained tuning parameters, pyATF
is designed to define constraints on parameters [61] (lines 7
and 10), whereas ytopt defines constraints on entire configu-
rations (see Section 2.2). While this design decision of ytopt
does not complicate expressing constraints for the user, it se-
verely limits ytopt’s auto-tuning efficiency [61]. BaCO uses
the same constraint design as pyATF, but BaCO is limited to
constraint functions implemented in NumExpr [24], whereas
pyATF is more general and flexible by allowing any arbitrary
Python callable as constraint function.
Regarding parameter ranges, we have designed pyATF to

support – additionally to the interval range type (lines 6
and 9 in Listing 5) – the Set typewhichmay contain also non-
numerical values: for example, Set(’red’,’blue’) repre-
sents the parameter range containing the two strings red,
and blue. For numerical values, the set range type is bene-
ficial when parameter’s range is small and/or does not fol-
low a regular pattern, e.g., Set(3,5,7) represents the val-
ues 3,5,7.
To further contribute to the user’s productivity, pyATF’s

interval range type is designed to (optionally) allow generator
functions: Interval(START,END,STEP_SIZE,GENERATOR).
A generator function GENERATOR can be any arbitrary Python
callable that takes as input a value between START and END
and that yields a value of an arbitrary type. Using a generator
function has the effect that the parameter range contains
the values GENERATOR(i) for i ∈ {START, . . . , END}. For ex-
ample, using Interval(1,10 , generator = pow2), where
pow2 = lambda i: 2**i, results in the first ten powers of two.
In contrast to pyATF, the BaCO framework is limited to the
single generator function log which computes logarithm,
and ytopt has no support for generator functions at all.

4Our pyATF auto-tuning tool is available open source (https://github.com/atf-
tuner/pyATF) and contains all the examples discussed in this section.

1# Input Size

2N = 1000

3
4# Step 1: Generate the Search Space

5WPT = TP( 'WPT' ,

6Interval( 1,N ) ,

7lambda WPT: N % WPT == 0 )

8LS = TP( 'LS' ,

9Interval( 1,N ) ,

10lambda WPT ,LS: (N/WPT) % LS == 0 )

11
12# Step 2: Implement a Cost Function

13saxpy_code = # ... (Listing 1)

14
15N = np.int32( N )

16a = np.float32( np.random.random () )

17x = np.random.rand(N). astype(np.float32)

18y = np.random.rand(N). astype(np.float32)

19
20cf = opencl.CostFunction( saxpy_code )

21.platform_id( 0 ) \

22.device_id( 0 ) \

23.kernel_args( N, a,x,y ) \

24.glb_size( lambda WPT ,LS: N/WPT ) \

25.lcl_size( lambda LS: LS )

26
27# Step 3: Explore the Search Space

28config = Tuner (). tuning_parames( WPT ,LS ) \

29.search_technique( AUC() ) \

30.tune( cf, Evaluations (50) )

Listing 5. pyATF Python program for auto-tuning SAXPY

3.2 Step 2: Implementing a Cost Function
For high flexibility, pyATF supports as cost function any arbi-
trary Python callable, the same as BaCO and ytopt. However,
implementing cost functions from scratch can be cumber-
some for the user, particularly when targeting programs im-
plemented in recent programming approaches, e.g., OpenCL
and CUDAwhich both require the so-called host code [54, 62]
for their execution. To simplify for the user the cumber-
some task of implementing cost functions, pyATF offers pre-
implemented cost functions.
Our pre-implemented opencl.CostFunction (Listing 5,

lines 20-25) is used for conveniently auto-tuning OpenCL
kernels in terms of runtime performance. In the example of
Listing 5, our cost function is initialized with the OpenCL
platform and device ids (lines 21-22) — this choice is arbitrary
and could also be any other of system’s OpenCL-compatible
devices. As the kernel’s arguments (line 23), we use the in-
put size 𝑁 (line 15), a random floating-point number for 𝑎
(line 16), and two 𝑁 -sized buffers for 𝑥 and 𝑦 that are also
filled with random floating-point numbers (lines 17 and 18) —
random data is commonly used as input when auto-tuning
OpenCL kernels. The kernel’s OpenCL global and local size
are set in lines 24 and 25 – for high flexibility, the sizes can
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also be set as arbitrary Python callables (as in the listing)
to make them dependent on tuning parameter values. The
initialized cost function cf (line 20) then takes configura-
tions comprising concrete values of parameters WPT and LS,
and it returns the SAXPY kernel’s runtime for these concrete
WPT and LS values. For this, cf internally replaces in the
kernel’s source code the tuning parameters’ names (e.g., in
line 7 of Listing 1) by their corresponding values in the input
configuration, using the OpenCL pre-processor, and it uses
pre-implemented OpenCL host code that invokes the kernel
with the passed global/local size, measures and returns the
kernel’s runtime using the OpenCL profiling API, etc.

Our pyATF tool also provides a pre-implemented cost func-
tion for auto-tuning CUDA kernels. The function is based
on the NVIDIA NVRTC [48] library and used analogously
to pyATF’s OpenCL cost function.
Additionally, pyATF provides a generic cost function to

simplify auto-tuning programs written in an arbitrary pro-
gramming language for the user, using an arbitrary tuning
objective (e.g., high runtime performance and/or low en-
ergy consumption). This generic cost function is initialized
with: 1) a command (that is executable on the system’s com-
mand line) for compiling the program to tune, 2) a command
for running the program, and, optionally, 3) the path to a
cost file to which the user program writes the configura-
tion’s cost that pyATF should minimize (e.g., runtime and/or
energy consumption). If no cost file is stated, pyATF auto-
matically measures and uses program’s runtime as cost. For
multi-objective tuning via pyATF’s generic cost function, the
auto-tuned program writes comma-separated costs to the
cost file; pyATF then minimizes these costs using the lexico-
graphical order, or, alternatively, a user-defined order.

3.3 Step 3: Exploring the Search Space
The same as in BaCO and ytopt, the search space is explored
in pyATF (Listing 5, lines 28-30) using a search technique, e.g.,
AUC as in Listing 5 (line 29). The tuning process is stopped
when an abort condition is met, which is after 50 evaluated
parameter configurations in the example of Listing 5 (line 30).
We outline pyATF’s supported search techniques and abort
conditions in the following.

Search Techniques. Currently, pyATF offers the follow-
ing, pre-implemented search techniques [78]: 1) Differential
Evolution, 2) Pattern Search, 3) Simulated Annealing, 4) Torc-
zon, 5) Exhaustive, and 6) Random. We have designed pyATF
generically, i.e., new search techniques can be easily added.

Since it is often not obvious for the user which search tech-
nique to use, pyATF also pre-implements the meta-technique
AUC [6] (line 29 in Listing 5). This meta-technique automati-
cally identifies and uses a search technique for the user, by
gradually testing the available search techniques and allo-
cating more exploration time to well-performing ones – AUC
is used as default technique in pyATF.

In contrast to pyATF, the BaCO and ytopt approaches are
specifically designed and optimized for the Bayesian search,
which often achieves good search results, but requires a care-
ful adjustment of so-called hyperparameters [45], which can
be complex, particularly for non-expert users. In contrast,
the search techniques implemented and offered in pyATF are
intended to work out-of-the-box, without requiring hyper-
parameter adjustments, so that auto-tuning becomes appeal-
ing also to common application developers. Furthermore,
pyATF’s search techniques work well for high-dimensional
search spaces, whereas the Bayesian search currently has
difficulties with such spaces [31], as we discuss in Section 4.

Abort Conditions. The state-of-the-art auto-tuners BaCO
and ytopt support as abort condition stopping the tuning
process after a user-defined number of evaluated configura-
tions (as in line 6 of Listing 2). Additionally, BaCO also allows
stopping the tuning process after a user-defined number
of minutes: e.g., using "time_budget": 60 to stop BaCO’s
auto-tuning process after 60 minutes.

We have experienced, that for real-world applications, user
requirements might be significantly more complex than stop-
ping the tuning process based on tuning time only (measured
in number of evaluated configurations or absolute time).
Our pyATF tuner aims to be more flexible than BaCO and

ytopt regarding abort conditions, to meet complex, real-
world user requirements: instead of stopping the tuning
based on the tuning time only, pyATF also allows stopping
the tuning process based on the tuning result (e.g., when the
cost falls below a user-defined threshold) or based on both
time and cost (e.g., when the cost could not be improved
within a user-defined time interval).

pyATF currently supports the following pre-implemented
abort conditions: 1) Duration( timedelta(t) ) which stops
the tuning process after a user-defined time interval t; here,
timedelta is part of Python’s datetimemodule [52], i.e., t can
be hours=2 or hours=2,minutes=30, etc; 2) Evaluations(n)

which stops after n tested configurations; 3) Fraction(f)
which stops after f*S tested configurations, where f is a
floating-point value in [0, 1] and S the search space size;
4) Cost(c) which stops tuning when a configuration with a
cost ≤ c has been found; 5) Speedup( s,timedelta(t) )which
stops when within the last time interval t the cost could not
be lowered by a factor ≥s; 6) Speedup(s,n)which stops when
within the last n tested configurations the cost could not be
lowered by a factor ≥s. If no abort condition is set, pyATF
uses Evaluations(S), where S is the search space size.
For more complex user requirements, pyATF allows com-

bining abort conditions via the logical operators And, Or, Not,
e.g., Or(Speedup(1.5,hours=3),Duration(hours=5)). Our log-
ical operators can be arbitrarily combined and nested to
express complex abort conditions.
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We have designed pyATF such that new abort conditions
can be easily added, by implementing a straightforward
Python interface.

4 Experimental Results5

This section shows that even though pyATF offers an easy-
to-use, Python-based user interface (introduced in Section 3),
it achieves high-quality auto-tuning results for real-world
case studies.

Application Case Studies. We use four real-world case
studies that differ significantly in their search space charac-
teristics (Table 1): 1) Coupled Cluster (CCSD(T)) [18] which
computes so-called molecular properties and is important in
quantum chemistry, 2) Gaussian Convolution (CONV) which
is a popular stencil computation and heavily used in the
domain of image processing, 3) Probabilistic Record Link-
age (PRL) [59] which identifies duplicate entries in a data-
base and is from the domain of data mining, and 4) Matrix
Multiplication (GEMM) which is a linear algebra routine and
heavily used in deep learning.
We rely on the auto-tunable implementations of these

studies that are generated according to the approach ofMulti-
Dimensional Homomorphisms (MDH) [53]. This is because
the MDH-based implementations of our studies have the
potential to be auto-tuned to higher performance than hand-
optimized solutions [53, 58, 61], based on large and complex
search spaces (described in the paragraph after next).

Data Characteristics. We use input data sizes (listed in
Table 1) taken frompopular real-world examples: 1) TCCG [65]
benchmark suite for CCSD(T); 2) ImageNet [20] data set
for CONV; 3) EKR [30], the largest cancer registry in Europe,
for PRL; 4) ResNet-50 [28] neural network for GEMM.

Search Space Characteristics. The search space charac-
teristics of our four studies are summarized in Table 1. For ex-
ample, our quantum chemistry study CCSD(T) has 39 tuning
parameters which have a minimum range size of 2 (boolean
parameters) and a maximum range size of 24 (tile size), and
the ranges contain on average 15.46 values. The search space
of CCSD(T) has a size of 8.81 ∗ 1018 – this is a small frac-
tion of 4.41 ∗ 10−25 of the unconstrained search space (i.e.,
when ignoring constraints and keeping invalid configura-
tions within the space, as OpenTuner) which contains > 1043
configurations. Note that the search spaces of our studies
depend on the input size [53] (e.g., tile size parameters are
defined in the range from 1 to the input size) to achieve high
performance [73].
Table 1 confirms that our case studies have very differ-

ent auto-tuning characteristics, which enables a thorough
evaluation of our pyATF tool.

5All experiments described in this section can be reproduced using our
artifact implementation [8].

Experimental Setup. Our system is equipped with two
Intel Xeon Gold 6140 CPUs, 192 GB main memory, and an
NVIDIA Ampere A100-PCIE-40GB GPU. We use the follow-
ing versions of vendor libraries: NVIDIA cuBLAS 11.10.1 and
NVIDIA cuDNN 8.9.7, as well as Intel oneMKL 2024.0.0 and
Intel oneDNN 3.3.0. For TVM, we use version 0.17.0.

4.1 Comparison of Auto-Tuning Efficiency
Figure 2 reports the auto-tuning efficiency (i.e., how the
runtime of the auto-tuned case studies decreases with in-
creasing tuning time) of pyATF as compared to the state-of-
the-art auto-tuning tools listed in Figure 1. For a fair com-
parison, we use for all tools their recommended, default
search technique, e.g., AUC for pyATF, OpenTuner, and ATF.
For completeness, the figure also reports the performance
achieved by hand-optimized vendor libraries: NVIDIA cuDNN
and Intel oneDNN for computing image processing exam-
ple CONV, and NVIDIA cuBLAS and Intel oneMKL for deep-
learning computation GEMM. Additionally, we also report the
performance achieved by TVM [16] which relies internally on
its own auto-tunable implementations6; the TVM-generated
implementations are optimized using TVM’s own Ansor [80]
optimization engine which is specifically designed and opti-
mized for TVM.

Figure 3 reports additionally for each combination of a case
study and auto-tuning tool the: 1) initialization time (which is
dominated by the time for generating and storing the search
space [61], but also includes all runtimes for instantiating
Python/C++ classes, etc); 2) search space size; 3) number
of evaluated configurations that are valid (i.e., that satisfy
the constraints on tuning parameters); 4) number of eval-
uated configurations that are invalid (that do not satisfy
constraints). These characteristics often differ significantly
between studies and tools, as explained in the following.

In Figure 3, the search space sizes of different tools differ
for the same study. The tools pyATF and ATF generate and
explore exactly the same search space, of all valid parameter
configurations, based on the concepts introduced by Rasch
et al. [61]. In contrast, CLTune uses a straightforward pro-
cess to generate its search space [61] and thus has to rely on
hand-pruned parameter ranges to generate its search space
in acceptable time. However, such pruning limits CLTunes’s
auto-tuning efficiency (as reported in Figure 2 and discussed
below)7. OpenTuner uses straightforwardly the space that
contains also invalid configurations (which severely limits
its auto-tuning efficiency, as also discussed below). KTT re-
cently adopted the search space generation and storing tech-
niques by Rasch et al. [61] that are also used by pyATF [2].
However, KTT has to use a smaller search space than pyATF,

6We rely in our experiments on MDH-based implementations [53], because
these have the potential to be auto-tuned to higher performance than TVM.
7For a fair comparison, we use for CLTune exactly the hand-pruned pa-
rameter ranges that are recommended by the CLTune developers [47] (e.g.,
powers of two for tile sizes).
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Table 1. Search space characteristics of our four application studies. Columns denote: 1) number of tuning parame-
ters (#TP); 2) minimum parameter range size (Min. RS); 3) maximum parameter range size (Max. RS); 4) average parameter range
size (Avg. RS); 5) search space size (|SP|); 6) fraction of the unconstrained search space that represent valid configurations (FT).

Name Domain Input Size #TP Min. RS Max. RS Avg. RS |SP| FT
1 CCSD(T) Quantum Chemistry 24 × 16 × 16 × 24 × 16 × 16 × 24 39 2 24 15.46 8.81 ∗ 1018 4.41 ∗ 10−25
2 CONV Image Processing 4288 × 2848 15 2 4288 2379.33 2.03 ∗ 108 2.33 ∗ 10−29
3 PRL Data Mining 1024 × 1024 14 2 1024 586.14 2.31 ∗ 107 1.33 ∗ 10−19
4 GEMM Deep Learning 1 × 1000 × 2048 19 1 2048 642.89 1.08 ∗ 108 6.34 ∗ 10−21

Figure 2. Auto-tuning efficiency (lower is better) of pyATF vs state-of-the-art auto-tuners (as well as hand-optimized vendor
libraries and TVM) on NVIDIA GPU (top part of the figure) and Intel CPU (bottom part) for real-world case studies from
popular domains. We report the medians of 10 auto-tuning runs, each run of 4h. Missing lines indicate missing support for
studies: BaCO, ytopt, and HyperMapper fail for all studies, because they rely on the Bayesian search, and CLTune fails for CONV
and CCSD(T), because its search space pruning causes an empty search space (CONV) or its initialization time exceeds the total
auto-tuning time of 4h (CCSD(T)) — see Figure 3. TVM cannot be used for expressing PRL [7].

because KTT cannot handle tuning parameters representing
OpenCL’s numbers of work-groups when synchronization
among work-groups is required: such synchronization is
achieved in OpenCL by starting a second kernel, but KTT
is inherently designed and optimized toward auto-tuning a
single OpenCL kernel only. In contrast, pyATF is designed
more generically (as discussed in Section 3).

Regarding initialization time in Figure 3, the tools pyATF,
ATF, and KTT often have a substantially lower initialization
time than CLTune, even when using the expert-recommend,
hand-pruned parameter ranges for CLTune. This is because
pyATF, ATF, and KTT internally implement optimized algo-
rithms for search space generation and storing [61], which
makes them applicable to important real-world studies (e.g.,
those in Figure 2). ATF has a lower initialization time than
pyATF, because ATF is implemented in the performance-
oriented C++ programming language, whereas pyATF is im-
plemented in Python to offer a convenient user interface and
to be easily extensible, e.g., by new search techniques (as

discussed in Section 3)8. However, the differences between
pyATF and ATF, e.g.,∼ 40 seconds for example CONV, are negli-
gible in general, because auto-tuning usually runs for several
minutes or hours (e.g., 4h in Figure 2). OpenTuner does not
explicitly generate and store a search space [61] and thus
has a constant, low initialization time; however, at the cost
of having invalid configurations within its space [61] which
severely limits its auto-tuning efficiency, as discussed below.
Initialization times differ for the same tool over different
studies, because the studies have differently sized, input-
dependent search spaces (as discussed above). As compared
to CLTune, the KTT tool achieves a similar low initialization
time as pyATF and ATF, because it also adopted the search
space generation and storing techniques of Rasch et al. [61].

The number of configurations explored by pyATF and ATF
differ because search techniques have a non-deterministic
behavior. KTT often explores more configurations than other

8Note that pyATF has a lower initialization time than ATF for example
CCSD(T), because our Python implementation of pyATF seems to be more
efficient than ATF’s C++ implementation when parameter ranges are small.
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NVIDIA Ampere GPU Intel Skylake CPU

SP
Size

Init.
Time

Valid
Configs.

Invalid
Configs.

SP
Size

Init.
Time

Valid
Configs.

Invalid
Configs.

C
C

SD
(T

)

pyATF 8.81E+18 337 ms 5,265 0 8.81E+18 330 ms 5,507 0

BaCO crashes due to Bayesian search crashes due to Bayesian search

ATF 8.81E+18 687 ms 7,829 0 8.81E+18 670 ms 6,795 0

ytopt crashes due to Bayesian search crashes due to Bayesian search

KTT 4.89E+18 1293 ms 25,367 0 4.89E+18 1303 ms 18,233 0

HyperMapper crashes due to Bayesian search crashes due to Bayesian search

Kernel Tuner cannot express global size cannot express global size

CLTune 2.32E+09 > 4.0h 0 0 2.32E+09 > 4.0h 0 0

OpenTuner 2.00E+43 791 ms 0 210,090 2.00E+43 867 ms 0 195,182

CO
N

V

pyATF 2.03E+08 43433 ms 10,874 0 2.03E+08 46866 ms 18,473 0

BaCO crashes due to Bayesian search crashes due to Bayesian search

ATF 2.03E+08 4290 ms 11,885 0 2.03E+08 1999 ms 21,586 0

ytopt crashes due to Bayesian search crashes due to Bayesian search

KTT 2.03E+08 9477 ms 26,302 0 2.03E+08 14932 ms 34,412 0

HyperMapper crashes due to Bayesian search crashes due to Bayesian search

Kernel Tuner cannot express global size cannot express global size

CLTune 0 80105 ms 0 0 0 143508 ms 0 0

OpenTuner 8.59E+36 796 ms 0 202,064 8.59E+36 873 ms 0 187,446

P
R

L

pyATF 2.31E+07 1057 ms 354 0 2.31E+07 1091 ms 195 0

BaCO crashes due to Bayesian search crashes due to Bayesian search

ATF 2.31E+07 322 ms 261 0 2.31E+07 317 ms 271 0

ytopt crashes due to Bayesian search crashes due to Bayesian search

KTT 8.46E+06 1369 ms 101 0 8.46E+06 1378 ms 101 0

HyperMapper crashes due to Bayesian search crashes due to Bayesian search

Kernel Tuner cannot express global size cannot express global size

CLTune custom data-types not supported custom data-types not supported

OpenTuner 1.74E+26 882 ms 0 200,881 1.74E+26 873 ms 0 182,118

G
EM

M

pyATF 1.08E+08 1885 ms 10,709 0 1.08E+08 1896 ms 15,614 0

BaCO crashes due to Bayesian search crashes due to Bayesian search

ATF 1.08E+08 341 ms 10,805 0 1.08E+08 345 ms 16,108 0

ytopt crashes due to Bayesian search crashes due to Bayesian search

KTT 3.90E+07 2448 ms 34,737 0 3.90E+07 2499 ms 17,366 0

HyperMapper crashes due to Bayesian search crashes due to Bayesian search

Kernel Tuner cannot express global size cannot express global size

CLTune 1,008 22 min 1,008 0 1,008 23 min 1,008 0

OpenTuner 1.71E+28 840 ms 0 196,618 1.71E+28 836 ms 0 181,289

Figure 3. Characteristics of auto-tuning runs reported in Figure 2

tools, because it cannot be configured to use warm-up runs
and multiple evaluations of a configuration – to achieve
high-quality measurements, we use 3 warm-up runs and
take the average of 5 evaluations for all other tools (includ-
ing pyATF). Note that pyATF, ATF, and KTT generate and store
the constrained search space in order to explore valid con-
figurations only. In contrast, OpenTuner keeps invalid con-
figurations within its space, which significantly simplifies

OpenTuner’s implementation [61]. However, keeping invalid
configurations within the space severely limits OpenTuner’s
auto-tuning capabilities for recent parallel implementations
whose spaces contain many invalid configurations when
constraints on tuning parameters are ignored (see Table 1),
as discussed in the following.
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In Figure 2, we observe that pyATF, even though based on
Python, achieves for our four application case studies, on
GPU and CPU, analogous high quality auto-tuning results
as the state-of-the-art ATF tool which is implemented in
the performance-oriented C++ programming language [61].
This is because the Python overhead (e.g., of ∼ 40 seconds for
example CONV) is amortized during the overall auto-tuning
process which runs 4 hours in Figure 2.

Tools BaCO, ytopt, and HyperMapper rely on the Bayesian
search which has difficulties with exploring the search spaces
of our case studies: our studies rely on complex search spaces
that are high-dimensional to achieve high performance on
different kinds of architectures and for different data charac-
teristics (often higher than hand-optimized vendor libraries,
as reported in Figure 2). The Bayesian search crashes for ex-
ploring these spaces because of their high dimensionality.9

The KTT tool often struggles with achieving the same auto-
tuning efficiency as other tools. This is because KTT uses ran-
dom search to explore its search spaces, which is particularly
inefficient for large spaces (e.g., the space of CCSD(T)). In
contrast, pyATF implements and uses the efficient AUC search
technique.

Kernel Tuner has difficulties with expressing the OpenCL
global sizes of our studies and thus cannot be used for auto-
tuning: Kernel Tuner is limited to expressing global sizes
that consist of constants, optionally divided by the value of a
tuning parameter. However, the global sizes of our stud-
ies are complex arithmetic expressions of constants and
tuning parameters (e.g., containing also multiplications) to
achieve high performance [53]. For such complex require-
ments, pyATF allows arbitrary Python callables as global and
local sizes. Note that even when Kernel Tuner would be ex-
tended to support expressing global sizes as required by our
case studies, it would suffer from similar issues as CLTune,
because it internally relies on the same search space gener-
ation and storing techniques as CLTune (instead of on the
techniques implemented in pyATF [61]).

CLTune struggles with achieving the auto-tuning results
of pyATF, because we have to use hand-pruned parameter
ranges for CLTune (as discussed above) to enable CLTune gen-
erating its spaces in acceptable time. However, hand-pruning
parameter ranges usually misses well-performing configura-
tions, because well-performing configurations often differ
significantly for different architectures and data characteris-
tics [61]. Furthermore, requiring hand-pruning reduces the
usability of CLTune, because pruning requires considerable
expert knowledge from the user, who generally has only
limited knowledge of hardware and optimization details.

9Recent research on Bayesian-based optimizations (e.g., by Hvarfner et al.
[31]) aims to widen the applicability of Bayesian search, but these research
insights have not been implemented in auto-tuning tools yet. Note that
Hellsten et al. [29] experimentally compare BaCO against ATF, based on case
studies relying on simpler, lower-dimensional search spaces than the spaces
considered in this work.

OpenTuner cannot find valid configurations within its
spaces, because its spaces contain invalid configurations: for
our studies, only a fraction of < 0.00001% represent valid
configurations within the spaces of OpenTuner (as reported
in Table 1). Consequently, OpenTuner was not able to find a
single valid configuration within the 4h of tuning time, for
any case study.

4.2 Further Case Studies
In the previous subsection, we have experimentally shown
that pyATF – even though offering an easy-to-use, Python-
based user interface (introduced and discussed in Section 3) –
achieves auto-tuning results of the same high quality as
the ATF tool, because pyATF internally implements the same
auto-tuning techniques as ATF [61].
Previous work has successfully used ATF for auto-tuning

important real-world case studies from popular domains,
summarized in Figure 4. Consequently, we argue that pyATF
is likely to also achieve the same high-quality auto-tuning
results for the case studies in Figure 4 as ATF, because both
pyATF and ATF internally implement the same auto-tuning
concepts.

Domains Applications
1 Compiler Optimization GCC Flags [56], SIMD Vectorization [69]
2 Data Mining Probabilistic Record Linkage [59]
3 Quantum Chemistry CCSD(T) [53]
3 Deep Learning BLAS [53, 56]
4 Sparse Computations SpMM, SpMV, TTV [29]
5 DSL Compiler Optimizations Lift [26, 37], MDH [53, 55, 58], RISE [29]
6 Polyhedral Compilation PPCG, PluTo [26, 53]
7 Signal Processing FFT [37]
8 Stencil Computations Conv [53, 56, 58], Jacobi2D/3D, ... [26, 53, 58, 68]
9 FPGA Programming BFS, Audio, PreEuler [29]

Figure 4. Applications auto-tuned using ATF

5 Related Work
Auto-tuning is a popular technique in the area of compiler
construction. Many existing approaches achieve high auto-
tuning efficiency [4, 5, 11–15, 17, 19, 21–23, 25, 32, 33, 35, 36,
38–41, 43, 44, 51, 63, 64, 66, 67, 70–72, 76, 77, 81]. However,
these approaches are often limited in their applicability, by
being specifically designed and optimized for a particular
target domain only (e.g., only linear algebra [77]), thus also
known as non-generic auto-tuners.
Our work is inspired by generic auto-tuning approaches

which widen the applicability of auto-tuning by targeting
arbitrary application domains. The state-of-the-art generic
auto-tuning tools are summarized in Figure 1. These tools
often rely on proof-of-concept user interfaces, because the
tools are generally focused on presenting and demonstrat-
ing scientific contributions instead of being useful tools in
practice. Moreover, many of the existing auto-tuning tools
struggle with efficiently handling tuning parameters that are
constrained (see Figure 1), which limits their auto-tuning
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efficiency for modern parallel implementations (as exper-
imentally confirmed in Section 4). Also, the existing tools
are often not offered in the increasingly popular Python pro-
gramming language and thus complex to extend (e.g., by new
search techniques) and integrate into Python-based projects
(e.g., modern deep learning frameworks and tools [3, 42, 49]).
Some auto-tuning tools are also limited to auto-tuning pro-
grams in certain programming languages only (Figure 1).
The ATF approach is most close to pyATF, but its user

interface is based on a DSL (Domain Specific Language) [56,
61] or C++ [57], which both were experienced and reported
by real-world ATF users as notably more complex to use than
our new Python-based interface for pyATF.

The pyATF auto-tuning tool introduced in this paper aims
to improve the usability, functionality, and/or applicability
of the existing generic auto-tuning tools in Figure 1. The
user interface of pyATF is designed with a particular focus
on usability for real-world users. For example, apart from
the facts that pyATF works immediately out-of-the-box, can
be conveniently installed via the Python pip package man-
ager, is extensively documented and illustrated on a website,
and is publicly available and open source, we discuss in Sec-
tion 3 that pyATF significantly improves each step required
in generic auto-tuning (discussed in Section 3): 1. Generating
the Search Space: by allowing arbitrary Python callables as
constraint function of parameters, and by offering expressive
range types for parameters; 2. Implementing a Cost Function:
by targeting programs in arbitrary languages to tune, and
by offering pre-implemented cost functions (e.g., for CUDA
and OpenCL programs); 3. Exploring the Search Space: by
offering a rich set of pre-implemented, well-proven numeri-
cal search techniques, including so-called meta-techniques
that automatically choose the technique for the user, and
by offering a wide set of abort conditions that can be arbi-
trarily combined by the user to meet complex, real-world
user requirements – pyATF is designed generically such that
new search techniques and abort conditions can be easily
added to pyATF for special user requirements. Particularly,
pyATF is designed and offered in the Python programming
language which is experienced as productive [1], allows eas-
ily extending pyATF (e.g., by new search techniques and abort
conditions), and also allows easy integration into Python-
based projects, e.g., modern deep learning frameworks and
tools, such as TensorFlow [3], PyTorch [49], and the recent
Mojo programming approach [42]. In Section 4, we confirm
experimentally that even though pyATF offers an expressive,
easy-to-use, Python-based user interface, it achieves auto-
tuning results of the same (or even higher) quality as the
state-of-the-art auto-tuning tools in Figure 1.

More classic generic auto-tuning tools include Active Har-
mony [74] and Orio [27] which both struggle with efficiently
handling constrained tuning parameters [61] – a severe lim-
itation when auto-tuning recent parallel implementations.

Other kinds of approaches are focused on generating auto-
tunable code, rather than being auto-tuning tools themselves,
e.g., TVM [16] and MDH [53, 58, 60] (both used for code
generation in Section 4).

6 Conclusion
We introduce the generic auto-tuning tool pyATF which in-
troduces an easy-to-use, expressive user interface for auto-
tuning and that combines three major advantages of the
existing state-of-the-art generic auto-tuning tools: i) pyATF’s
user interface is offered in the Python programming language
which is becoming increasingly popular, particularly among
non-expert users, and it allows easily extending pyATF (e.g.,
by new search techniques and abort conditions) and integrat-
ing it into Python-based projects, e.g., modern deep learn-
ing frameworks and tools; ii) pyATF supports constrained
tuning parameters, as required for efficiently auto-tuning
modern parallel implementations; iii) pyATF can be used for
auto-tuning programs written in arbitrary programming lan-
guages. We argue that pyATF’s Python-based user interface
is easier to use and more expressive than the current state-of-
the-art auto-tuning user interfaces (e.g., regarding expressing
constraint functions and defining abort conditions) – improv-
ing the usability of auto-tuning tools has been identified as
an ongoing, major challenge in auto-tuning [9, 10]. More-
over, pyATF works immediately out-of-the-box, is publicly
available and open source, can be conveniently installed via
the Python pip package manager, and is extensively doc-
umented and illustrated on a website10. Our experiments
confirm that even though pyATF is based on a user-friendly
Python interface, it achieves auto-tuning results of the same
(or even higher) quality than state-of-the-art auto-tuning
tools, for real-world case studies from important areas: quan-
tum chemistry, image processing, data mining, and deep
learning. We also argue that pyATF can be used in many
further popular domains, including compiler optimizations
and FPGA programming.

We consider pyATF as a useful tool to assist research and
industrial projects focused on compiler construction, due
to pyATF’s usability, broad applicability, and performance
achievements for real-world case studies.
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